一研 修一

天草陶土の物性を把握するための基礎研究

環境・機能材料科 浦郷 寛康

要 約

陶磁器の製造に用いられる天草陶土の諸物性を把握するため、その焼成特性について検討した。焼成温度 は 900℃~1300℃の範囲において、物性評価(吸水率、開気孔率、嵩密度、真密度、細孔容積及び細孔径分布、 比表面積、曲げ強度、鉱物組成、化学組成、組織観察、熱伝導率、熱膨張)を行った。焼成温度が 1100℃~ 1200℃間において吸水率及び開気孔率の変化が顕著であった。特に見掛密度、細孔径分布、組織性状において、 気孔の増減を把握することによって、多孔質体から緻密化に至る焼結プロセスの予測が可能であった。

キーワード:天草陶土、焼成特性、押出成形、細孔径、多孔質、緻密化、閉気孔

1. はじめに

天草陶土は主に肥前地域の陶磁器産地に広く流通 しており、食器製造には欠かせない原材料である。 本研究では天草陶土の諸物性を把握することを目的 として、その焼成特性について検討した。また各種 測定機器の取り扱い方法を習得すると共に、得られ た研究知見を今後の窯業原料を使った技術開発の基 礎とする。

2. 実験方法

2.1 サンプル作製

評価サンプルを得るために押出成形機(宮崎鉄工 製 FM-P30)及び口径 ϕ 15mmの口金を用いて押出 成形を行った。押出用坏土には天草陶土(選上)を 用い、外径 ϕ 15mm、長さ300~400mmLの棒状成形 体を成形した。成形体はスポンジ上で24時間以上 自然乾燥した。乾燥体を長さ80mm程に切断した後、 900℃、1000℃、1100℃、1200℃、1300℃で電気炉焼 成した。昇温速度は100℃/hとし、保持時間は1h、 降温は自然冷却とした。

2.2 評価

各焼成体の吸水率、開気孔率、見掛密度、嵩密度 はアルキメデス法により、真密度は乾式自動密度計 (島津製作所製 AccuPyc 1330) により測定した。 細孔容積及び細孔径分布を確認するため水銀圧入法 (アントンパール社製 PoreMaster 60GT) により測 定した。比表面積を確認するため窒素ガス吸着法(ア ントンパール社製 AUTOSORB-I)により測定し た。曲げ強度は試験片(外径 13mm、長さ 70mmの 丸棒)が厚く歪みにくいため、スパンを50mmとし3 点曲げにて測定した(島津製作所製 AUTOGRAPH AGX-V)。結晶構造の同定には粉末X線回折装置(ス ペクトリス社製 Empyrean)を用いた。化学組成 を把握するために蛍光 X 線分析 (スペクトリス社 製 Zetium)を行った。表面組織の観察には電子顕 微鏡(日本電子製 JSM-7100F)を用いた。熱的特 性を把握するために熱伝導率(京都電子工業製 KemthermQTM-D3)と熱膨張(リガク製 TMA 83 II) をそれぞれ測定した。

3. 結果

3.1 吸水率、開気孔率、見掛密度、嵩密度、 真密度

吸水率、開気孔率、見掛密度、嵩密度、真密度の 測定結果を図1及び図2に示す。吸水率、開気孔率は、 焼成温度が増加するに伴って、減少した。特に 1100℃を超えはじめると大幅な減少(吸水率:16% →3%、開気孔率:29%→7%)がみられた。見掛密 度は900℃~1100℃の範囲においては約2.6g/cm³で 推移し、1200℃~1300℃では2.3 g/cm³~2.4g/cm³ まで低下した。一方、嵩密度は焼成温度が上がるに つれて増加した。また、真密度は比較的横這いであっ た。

3.2 細孔容積、細孔径分布

各焼成温度における細孔容積、細孔径分布を図 3 に示す。全細孔容積(A)は、焼成温度が高くなる につれて減少し、焼成温度が 1300℃に達すると 0.01cm³/gまで下がった。細孔径分布図(B)から分 かるように細孔直径 1µm 以下に注目すると、900℃ ~ 1000℃のように焼成温度が低い場合では、より 小さい孔(約 0.2µm)が多数存在すし、1100℃~ 1200℃では 0.2µm 以下の孔は減少し、より大きい 孔(約 0.5µm)に支配され分布していた。また、 1300℃においては 0.2µm ~ 0.5µm の孔は消失し、主 要なモードは認められなかった。表1 に全細孔容積 とメディアン細孔直径及びモード径を示す。900℃ ~ 1200℃において、メディアン細孔直径(中央値) と分布が最も多いモード径は概ね一致していた。

3.3 比表面積

前準備として、測定試料の大きさと比表面積の 関係を確認するため、1300℃焼成体について 0.05 ~0.15mm、0.15~0.45mm、0.45~1mm、1~2mm の各範囲で篩分けした試料の測定を行った。図4 に その結果を示す。試料サイズが大きくなるにつれ て比表面積は減少傾向を示したが、その変化量は 0.02~0.11m²/gと比較的微小であった。そこで本実 験では試料サイズは無視できるものと判断し、各 試料の大きさを1~2mm サイズに調製し測定した。 図5 に各焼成温度における比表面積を示す。比表面 積は 900℃及び 1000℃においてそれぞれ 10m²/g、 5.6m²/g となった。また 1100℃を超えると、1m²/g 未満まで大幅に低下した。

3.4 曲げ強度

曲げ強度の結果を図6に示す。焼成温度が上がる につれて増加し、焼成温度900℃において 5MPa、 1300℃では78MPa となった。

3.5 粉末 X 線回折

各焼成体の粉末 X 線回折測定結果を図 7 に示す。 原料に含まれる鉱物は石英、セリサイト、カオリ ナイトであった。900℃~1000℃においてはカオリ ナイトが消失し、石英とセリサイトとなった。 1100℃~1300℃ではセリサイトが消失し、ムライ ト、石英及びアモルファスを示した。

図3 細孔容積(A)及び細孔分布(B)

表 1	全細孔容積とメ	ディア	ン径、	モード径
- L			~ 17.	

焼成温度 (°C)	全細孔容積 (cm³/g)	メディアン 細孔直径(μm)	モード径 (µm)
900	0.22	0.22	0.22
1000	0.20	0.27	0.27
1100	0.16	0.50	0.48
1200	0.07	0.52	0.46
1300	0.01	—	—

図4 1300℃焼成品の節分け範囲と比表面積の関係

図7 各焼成温度における粉末X線回折パターン

3.6 蛍光 X 線分析

測定条件の異なる天草陶土原料の化学組成を表 2 に示す。天草陶土はそのほとんどが SiO2、Al2O3 で あり、加えて微量のK2Oで構成されていた。測定条 件別でみると、検量線法は FP 法のものと比べ、 SiO2 と Al2O3 において、1% 程度の増減を示した。 一方、FP 法において、試料形状がビード時と比較 するとペレット及びパウダーでは、5% 程度の増減 がみられた。このように測定条件が異なることに よって、測定値も変わるため注意が必要である。

表2 天草陶土の化学組成及び測定条件毎の比較

							(単位	: wt%)
方法	※試料形状	SiO ₂	Al_2O_3	K_2O	Fe_2O_3	Na ₂ O	MgO	CaO
検量線	ビード	74.14	19.64	3.92	0.57	0.12	0.09	0.09
	ビード	74.36	20.66	4.02	0.58	0.15	0.11	0.09
FP	パウダー	68.01	25.73	5.11	0.73	0.11	0.12	0.08
	ペレット	69.29	25.06	4.64	0.62	0.11	0.13	0.08

※ビード:粉末を溶融したガラスビード、ペレット:粉末をプレス成形した試料、 パウダー:粉末試料

3.7 組織観察

各焼成体の破断面組織を図 8 に示す。900℃では 10µm~20µm 程度の鱗片状の組織が層を形成し、 多孔質となっていた。1000℃についても 900℃のそ れと近い性状を有しており、加えて 2µm~5µm 程 度の鱗片組織が顕著にみられた。1100℃では一部に 5µm 程度の鱗片状の層を成しているが、1000℃時に 比べて減少していた。1200℃ではその焼結過程に よって、鱗片状の層間の空隙が無くなり、より平滑 な組織になっているように見える。1300℃に達する とさらに焼結が進行し、平滑な破面となった。一方 で、所々に 10µm 程度の気孔が確認できた。

3.8 熱伝導率

熱伝導率の測定結果を図9に示す。熱伝導率は焼 成温度に比例して増加した。焼成温度900℃~1000℃ において0.38~0.40W/m・K、1300℃では1.86W/m・K を示した。

3.9 熱膨張

熱膨張の測定結果を図10 に示す。熱膨張は 900℃ ~1100℃と 1200℃~1300℃の群で傾向が異なり、後 者がやや高い値で推移した。また 570℃近傍には、 石英のα-β相転移が確認された。

4. 考 察

900℃~ 1000℃焼成体において、他の焼成体と比 べると、吸水率(図1)、全細孔容積及び細孔直径(図3) が高い値を示した。組織性状も鱗片状組織が多くみ られることから、焼結には至っておらず、多孔質体 であることが示唆される。図9より、900℃~ 1000℃ 焼成体のような多孔質体においては、空気層を多く

含むため断熱効果の影響によって、熱伝導率が低く なっているものと考えられる。1100℃焼成体は、図 2の見掛密度が 900℃及び 1000℃焼成体と同程度で あった。一方で、全細孔容積の低下(図3)と 900℃~ 1000℃焼成体に多く見られた鱗片状組織 (図 8) が減少していることから、焼結の初期段階 であることが示唆される。1200℃~1300℃焼成体に おいては、見掛密度の結果(3.1)のとおりで、そ の低下が顕著であった。見掛密度は閉気孔を体積と して含むが、開気孔は含まない¹⁾。そのため 1200℃ 以上の焼結が進行する過程において、開気孔が潰れ て減少するが、一方で、試料内部の閉気孔が増大す ることによって、見掛密度が低下したものと考えら れる。嵩密度は開気孔と閉気孔を体積として取り扱 う¹⁾ため、低温側では低密度、高温側では高密度に なったものと考えられる。真密度は開気孔、閉気孔 を無視できる¹⁾ため各焼成温度における数値差が 小さくなったと推測される。また 1300℃焼成体に おいて、組織観察(3.7)でみられた平滑な破面は、 アモルファス相の生成に起因しているものと思われ る。この平滑面にみられた 10µm 程度の気孔は、 1300℃における吸水率が0%であったことから、閉 気孔であるが、細孔径分布の結果(図3)に現れた のは、測定粒子の破断面に閉気孔が露出したためと 推測される。熱伝導率は、多孔質体とは相反して、 1200℃~1300℃焼成体のように緻密性が高いほど断 熱効果が薄れ、熱伝導率が高くなったものと考えら れる。

5. まとめ

天草陶土の焼成特性における諸物性を把握するため、各測定及び評価を行い、以下のことが明らかと なった。

- (1)各焼成温度間における吸水率及び開気孔率の変化 量は 1100℃~ 1200℃間が最も顕著で、吸水率が 16%から3%、開気孔率が 29%から7%になるこ とが分かった。
- (2)焼成温度が 1100℃~ 1200℃において最も焼結が 促進することが明らかとなった。これは見掛密度 の減少と組織性状の緻密化によって確認された。
- (3)細孔径分布は 900℃~1000℃、1100℃~1200℃の

群に分けられ、それぞれ 0.2μm、0.5μm の細孔径 のピークを示した。また 1300℃については、こ の細孔径は消失することが分かった。

- (4)比表面積は 900℃及び 1000℃においてそれぞれ 10m²/g、5.6m²/g となり、1100℃を超えると、1m²/g 未満まで低下することが分かった。
- (5)曲げ強度は900℃及び1300℃においてそれぞれ 5MPa、78MPaを示し、焼結による差が顕著であった。
- (6)熱伝導率は900℃~1000℃において0.38~
 0.40W/m・K、1300℃では1.86W/m・Kを示すことが分かった。

文 献

 JIS R 1634: 1998 ファインセラミックスの焼 結体密度・開気孔率の測定方法