光学式ガスセンサーの開発

(可燃性ガス等を光で迅速に検知できるセンサーを開発する)

電子情報科 主任研究員 田 尻 健 志

2050年カーボンニュートラルの実現に向けて、再生可能エネルギーの導入と関連産業の創出が期待されている。 このような中、再生可能エネルギーの余剰電力を水素ガスに変換して貯蔵・利用する Power To Gas (P2G)が注 目を集めている。しかし、水素ガスを含めた可燃性ガスは拡散して爆発し易い特徴を持っているため、漏洩ガス を迅速に検知し爆発を未然に防ぐ必要がある。また、コストを抑え安全性を高めたセンサーシステムの実現は難 しい。そこで本研究では、空間内の水素ガスを迅速・高感度に検知できる光学式のガスセンサーを開発する。初 年度は、FDTD 法(有限差分時間領域法)により水素ガスを検知する連結微小球プローブモデルの仕様について検 証した。

1. 緒言

2050年カーボンニュートラルを実現するために、世 界各国で CO₂排出抑制や再生可能エネルギーの導入拡 大を目指している^[1]。再生可能エネルギーを主力電源 として利用するには、コスト、系統制約、調整力の問 題を解決する必要がある。このような中、余剰電力を 水素に変換して貯蔵・利用する Power To Gas (P2G) が注目され、実用化に向けた実証事業が進められてい る。水素ガスは正しい取扱いを行えば安全なガスであ るが、他の可燃性ガスと比較すると拡散性や浸透性が 高く、漏洩する危険性がある。また、空気中での爆発 濃度範囲が4%~75%と広いため、ガスが漏洩した場合 には迅速に検知し、爆発を未然に防ぐ必要がある。

従来から利用されている水素センサーには、接触燃 焼式や半導体式などがあるが、検知できるガス濃度範 囲が低濃度範囲と狭く、検知時間にも数十秒が必要で ある。また、検知箇所を数百℃に加熱する必要がある ため、加熱により水素ガスが爆発する危険性があり、 消費電力量も高くなる。さらには、空間的なガス分布 を把握するには、大量にセンサーを設置し、安全性と 経済性を両立する必要がある。

そこで本研究では、多種の可燃性ガスにあわせたプ ローブモデルの選定を理論・実験の両面で行い、光学 的に検知できる微小球プローブを開発する。また、微 小球プローブを用いた試作装置を開発し、可燃性ガス の検出濃度範囲を評価する。

微小球プローブは、ある条件下で光を入射すると微 小球内を周回する電磁波モードが発生し、特定波長の 入射光が強く散乱されることが分かっている^[2-3]。この 周回する特有の電磁波モードは、ウィスパリング・ギャ ラリー・モード (Whispering Gallery Mode、以下 WG モード)と呼ばれており、微小球表面状態(屈折率、 コート厚み)に非常に敏感である。このため、本研究 ではWGモードの変化を利用することで、微小球表面に 吸蔵した水素ガスを高感度に検知できるセンサーの開 発を行う。微小球プローブはシンプルな構造であるた め大量生産が容易であり、低コスト化に繋がる。また、 空間に大量のセンサーを設置できるため、水素ガスの 漏洩箇所や空間分布状態を把握することができる。

本報では、微小球プローブを FDTD 法(有限差分時間 領域法)により解析し、連結した微小球の仕様や励起 方法を検証したので報告する。

2. 研究内容と結果

2.1 微小球プローブの選定

微小球の光閉じ込め効果は、周辺媒質との屈折率差 が大きいほど高いため、高い屈折率を持つ微小球を選 定する必要がある。本研究では、Mie 理論に基づき微 小球の散乱断面積を計算し、空気や水素ガス中でも散 乱光ピークが発生する直径 10 µm、屈折率 n=1.40 のシ リカ (Si0₂) 微小球を選定した^[4]。

図1に示すように、シリカ微小球は表面に水素を吸 蔵する薄膜コーティングがない状態でも、水素ガスの 充填により散乱光の共振ピーク波長が短波長側へシフ トすることを確認している^[5]。このため、本研究では 直径10 µm のコーティング無しのシリカ微小球を用い て検証した。

また、昨年度までは単一の微小球を励起し、散乱光 の共振ピーク波長変化を確認したが、本研究では、2 個以上の微小球を連結した複合球へと展開し、散乱光 強度を比較することで検知範囲の拡大と感度の向上を 図る。

図1 水素充填による散乱光スペクトルの変化

2.2 微小球の励起方法

昨年度までは、油浸対物レンズ(ニコン製、100×) を用い、全反射減衰配置で単一のシリカ微小球を励起 し、分光器により散乱光スペクトルを検出した。しか し、微小球の励起位置が少しでも異なると散乱光強度 に誤差が生じ、装置の小型化や低コストを進めるには 励起方法と検出方法の改善が必要となる。そこで、本 研究では、励起方法を光ファイバー方式へと簡易化し、 再現性を向上させる検出システムを検証した。

図2(a)はFDTD法(有限差分時間領域法)を用い、 導波光から連結した微小球を励起する計算モデルを示 す。微小球の直径(d)と屈折率(n)は10µmと1.40、 周囲媒質の空気(n_{air})と導光板(n_w)の屈折率は、そ れぞれ1と1.5としている。励起波長は単一の微小球 でTM偏光の共振ピーク波長が発生する577 nmとした。 計算の結果、連結した2つの微小球で光が閉じ込めら れ、WGMが励起されることを確認した。また、図2(b) と(c)で示すように、2つの微小球が接触および非接 触の場合でもそれぞれの微小球でWGMが励起され、導 波光との結合が有効であることを確認した。したがっ て、本研究では直径数µmに細くした光ファイバーを用 い、テーパー部から染み出すエバネセント光との結合^[6] によりWGMを励起し、出射光の強度変化を検証する。

3. 結言

水素ガスを検知する微小球プローブとして、直径 10 µm、屈折率 1.40 のシリカ微小球を選定し、連結微 小球の仕様を検証した。また、FDTD 法(有限差分時間 領域法)により、導波光を連結微小球に結合すること でWGM を励起できることがわかった。次年度は、テー パー型光ファイバーを作製し、水素ガスの有無におけ る散乱光ピーク波長の変化による強度変化を検証する。

参考文献

- [1] 資源エネルギー庁、第6次エネルギー基本計画、 2021.
- [2] 福井萬壽夫、大津元一:光ナノテクノロジーの 基礎、オーム社、2003.
- [3] T. Tajiri, S. Matsumoto, T. Imato, T. Okamoto, and M. Haraguchi, Anal. Sci., 30, pp. 799-804, 2014.
- [4] 田尻健志、岡本敏弘、原口雅宣:第84回応用物 理学会秋季学術講演会、22a-A602-3,2023.
- [5] 田尻健志:長崎県工業技術センター研究報告、 No. 52, pp. 22-26, 2023.
- [6] 五神真、成田善廣:応用物理、第 71 巻 6 号、 pp. 671-677, 2002.