サバ冷凍落し身ブロック製造原料魚の鮮度

日下部重朗・黒川孝雄・樫木重哉

Influence of Freshness of the Material, Mackerel, on the Manufacture of Frozen Minced Flesh Block

Juro KUSAKABE, Takao KUROKAWA, and Shigeya OTEKI

冷凍落し身ブロックは、加工素材として肉蛋白質の凝固力については、すり身ほど強くなくてもよいが、結着性が要求される。昭和52年度から多魚性赤身魚の高度利用技術開発の一環として冷凍落し身ブロックの開発研究を実施したが、鮮度条件の異なる原料から製造した冷凍落し身ブロックの結着性について検討した結果、水飴魚や凍結腎もブロック原料として充分使用できることが明らかになった。さらに、結着性のみならず、製造管理上塩し肉の化学成分及び脱水性の面からも原料魚の鮮度条件について明らかにすることが必要と思われる。そのため水飴の鮮度が良好な原料サバと、それを塩に塩蔵及び凍結貯蔵した原料サバから冷凍落し身ブロックを製造し、原料サバの貯蔵日数によるそれらの変化について検討した。

実験方法

原料魚は、長崎市水揚げされた、硬直中のマサバ（体長21.0〜27.5cm、平均24.0cm、体重110g〜260g、平均173g）を入手し、一部は直ちに碎氷を塩して0℃の冷蔵庫で氷蔵し、またその他は-40℃で急速凍結して-30℃の冷蔵庫に凍結貯蔵した。

落し身の調製 温製落し身に一箱（約15kg）ずつの原料を用い、塩、塩水を除去して氷水中で洗浄した後、網ツール式採肉機（網目径4mm）で採肉したが、実験には採肉程度を弱とし、皮下脂肪の混入をできるだけさせた脂肪含量の比較的少ない一尾のサバを用いた。凍結原料は水道水で流水解凍後同様に処理した。入手当日の硬直中のマサバから採肉した

<table>
<thead>
<tr>
<th>表1 原料マサバ水揚げ当日の落し身の成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>採肉条件</td>
</tr>
<tr>
<td>一等身</td>
</tr>
<tr>
<td>二等身</td>
</tr>
</tbody>
</table>

*体長21.0〜27.5cm、平均24.0cm、体重110〜260g、平均173g

落し身の成分を表1に、採肉程度を強く採肉した二等身とともに示した。また、氷蔵日数ごとに観察した原料サバの解凍状況を表2に示した。

晒れ脱水水の調製 前記の落し身に5倍量の重曹0.2％、食塩0.1％の混合液を加え、5分間攪拌
15分間静置のアルカリ塩水を下に移した後、上澄液を捨て、塩し袋に移して水切後、手動の小型圧
機を用い、絶圧1.1kg/cm²で加圧脱水した。

冷凍乾燥脱水肉の調製 前記の晒し脱水肉をポリエチレン袋に入れ、手圧成形してパン立てし、-30℃のフリーザーで凍結貯蔵した。

冷凍乾燥身ブロックの調製 前記の晒し脱水肉に砂糖2％（加塩ブロックの場合は砂糖2％と食塩0.4％）を加え、ミキサーで2分間攪拌混合後、ポリエチレン袋に入れ、前記の冷凍晒し脱水肉と同様に処理して凍結貯蔵した。なお、調製中の温度は凍結に戻るまでは10℃以下に抑えた。

化学成分の測定 脂肪はBlich & Dyerの方法で、エキス塩基素はKonoSUらの方法で抽出後、ケルダール法で測定。揮発性塩基塩は微量拡散法で測定した。また、TBA値は試料5gに25mlの7.5％TCA、0.1％EDTA、0.1％プロピルゲートを加えて1分間ホモジナイズし、その濁液5mlに等量の0.02MのTBA試薬を加え、暗所に一夜（15時間）放置後、538nmの吸光値を測定し、pHは5倍量の蒸留水を加えて30秒間ホモジナイズ後、ガラス電極pHメーターで測定、水相は常法によった。

晒し肉の脱水性 冷凍乾燥身ブロックの調製と同時に、別に原料晒し身の一部を用い、毎回それぞれ晒し脱水肉を調製したが、その際晒し乾燥後の上澄液の液柱の高さから上澄液分離率を、また晒し肉を濁し袋に移して手しぼり及び小型抽油機で加圧脱水した脱水肉の含水率と歩留を測定した。

圧出水分の測定 冷凍晒し脱水肉を一週間貯蔵後、厚さ10mm、径25mmに切断し、それを解凍してNo.2濁紙に浸させ、中央理研製遊離水分測定器で、10kg/cm²、2分間加圧脱水し、その前後の重量差から求めた。

加熱ドリップの測定 压出水分の測定に用いたものの同一の試料を厚さ10mm、横30mm、縦50mmに切断し、クリハロンチューブに封入して90℃、30分間加熱し、遊離した水分を除き、その減量から求めた。

ゼリー強度の測定 冷凍乾燥身ブロックを解凍して径4mm目のミンチを通し、食塩3％、水分81％に調整して30分間搾り、折径45mmのクリハロンチューブに圧入して90℃、30分間加熱凝固させ、一夜放置後、スローセリゼリー強度計を用い、プランジャー径7mmで測定した。

結着性 冷凍乾燥身ブロックを厚さ10mm、横30mm、縦50mmに切断し、クリハロンチューブに封入して90℃、30分間加熱した肉片について引っ張り等の官能検査の結果を三段階（強、中、弱）で評価した。

実験結果

氷藏及び凍結貯蔵サバから調製した晒し身及び晒し脱水肉の化学成分 落し身及び晒し脱水肉の化学成分の変化を図1及び図2に示した。

晒し身についてみると、図1のように氷蔵4日で
日下部・黒川・樗木：サバ冷凍落し身ブロック製造原料魚の鮮度

図 1 マサバ落し身成分の経日変化
●＝● エキス懸濁素，一水分，■＝■ 粗脂肪，
△＝△ 振発性塩基窒素，△＝△ TBA値，△＝△ pH

エキス懸濁素は479 mg/100 gから370 mg/100 gに
減少したが，無水物当りに換算すると氷蔵3日まで
はほとんど変わらず，氷蔵4日で減少がみられた。揮
発性塩基窒素は10.4 mg/100 gから11.8 mg/100 g
と増加したが，これも無水物当りでみるとわずかな
増加に止っている。pHは6.10から6.20にわずかに
高く，またTBA値は0.38から0.65に氷蔵日数につ
れて比較的目立って増加がみられた。凍結貯蔵30日
では，氷蔵の場合とはほぼ同様な増減の傾向がみられ
たが，TBA値は0.01～0.20で，氷蔵に比べいち

図 2 マサバ晒し脱水肉成分の経日変化
（記号は図 1 に同じ）

じろしく低かった。

晒し脱水肉では，図 2 のようにTBA値以外は水
蔵と凍結貯蔵の原料別及び貯蔵日数による差はほと
んどみられなかったが，晒し脱水工程によってpH
が6.75～6.95に上昇し，水分は79.0～81.5%に増加
した反面，エキス懸濁素は115～135 mg/100 gに，ま
ま揮発性塩基窒素は2.8～4.3 mg/100 gに減少した。
比較的に変動がみられたTBA値は，氷蔵の場合
0.48～0.68，凍結貯蔵の場合0.16～0.78であったが，
落し身では低かった凍結貯蔵30日のもののが比較的に
高い吸光値を示した。

晒し肉の脱水性 アルカリ塩水晒し後の静置によ
る上澄液の分離率を図 3 に，袋濁し手しぼりによる
脱水肉の含水率を図 4 に，また小型圧縮機による乾

図 3 アルカリ塩水晒し後の静置による上澄液分離率の経日変化
●＝● 重曹0.2%，
食塩0.1%溶液1回
晒，○＝○ 対照，
清水1回晒

図 4 袋濁し手しぼりによる上澄洗水含水率の経日変化（記号は図 3 に同じ）

図 5 袋濁し手動圧縮機による晒し脱水肉の含水率の経日変化（記号は図 3 に同じ）

図 6 落し身からの晒し脱水肉及び冷凍落し身ブロックの歩留り（乾物換算）
●＝● アルカリ塩
水晒し脱水肉，
清水晒し脱水肉，
△＝△ 工場実験に
る冷凍落し身ブロ
ック

水肉の含水率と歩留りを図 5 及び図 6 に示した。

上澄液分離率は，図 3 のように氷蔵原料では氷蔵
日数とともに低下する傾向がみられ，氷蔵4日には
いちじるしく低下したが、凍結貯蔵原料では貯蔵30日でも水揚げ当日とほとんど変らなかった。氷蔵4日では著しく液中に多量の微粒状の肉が浮遊し、容易に沈降せず、厚い層をなしで分離率の低下につながった。

手しぼり脱水肉の含水率は、図4のように凍結貯蔵原料の場合に小さく、脱水されやすいが、水蔵原料では大きく、氷蔵日数とともに上澄液分離率の低下に対応して脱水されにくくなる傾向がみられた。ただし氷蔵4日目の含水率は比較的小さかったが、これは手しぼりの際微粒肉が液とともに流出して、残った粗粒肉のそれらを示したものと思われ、上澄液分離率は対応しなかった。

油圧機による晒し脱水肉の含水率は、図5のように凍結貯蔵原料の場合3.2〜3.4、氷蔵原料では4.0〜4.2であり、これも手しぼり脱水肉に比べて少く、加圧脱水によって脱水率が増大したが、手しぼり脱水においてみられた氷蔵日数による差は縮小されたものので、やはり凍結貯蔵原料の場合は含水性の優位は明らかである。

落し身からの晒し脱水肉及び冷凍落し身ブロックの歩留りは、図6のように凍結貯蔵及び氷蔵3日の原料では60〜70％であったが、氷蔵4日の原料では50〜57％といちじるしく低下し、晒し脱水の際の微粒肉の流失による損失が大きかったものと思われる。

冷凍晒し脱水肉及び冷凍落し身ブロックの品質

冷凍晒し脱水肉の圧出水分を図7に、同じく加熱ドリップを図8に示した。また、冷凍落し身ブロックのゼリー强度及び結着性を図9に示した。

圧出水分は、図7のように氷蔵原料の場合では21〜31％、凍結貯蔵原料では11〜15％であった。加熱ドリップは、図8のように氷蔵原料の場合では27〜31％、凍結貯蔵原料では21〜24％であった。圧出水分、加熱ドリップともに貯蔵日数による差は何れも少なかったが、原料別にみると凍結貯蔵した原料の方が少なかった。

ゼリー強度は、図9のように氷蔵原料からのものでは水揚げ当日の500g・cmから氷蔵3日後の100g・cmまで、3日間の貯蔵でほぼ直線的に減少し、氷蔵2日では半減した。また、凍結貯蔵では7日間の貯蔵で半減したが、その後30日間貯蔵後もほぼ同様のゼリー強度であった。

五感判定による結着性は、図9のように氷蔵原料からのものでは、加塩ブロックが氷蔵1日までが強、2日後で中、3日後で弱であり、無塩ブロックでは氷蔵1日までが中、2日後に弱に低下した。また、凍結貯蔵原料では加塩、無塩ブロックともに30日間の貯蔵後も水揚げ当日の生鮮時と同様に、それぞれ
考察

落し身及び晒し脱水肉の化学成分と原料魚の鮮度

氷蔵及び凍結貯蔵原料魚の落し身から調製した晒し脱水肉の化学成分は、TBAl値を除いて原料魚の貯蔵方法及び貯蔵日数による差はほとんどなく、晒し脱水工程によってほぼ一様に原料落し身よりpHが高く、水分は増加し、揮発性塩基窒素及びエキス発性窒素はいちじるしく減少した。TBAl値については、氷蔵原料からのものでは増減があって一様ではなかったが、30日間の凍結貯蔵原料では増加が目立った。鮮度の指標として揮発性塩基窒素とTBAl値に注目してみると、氷蔵4日及び凍結貯蔵30日の原料魚からの落し身及び晒し脱水肉のそれぞれの値は、何れも鮮度の点からみて問題になるほどではない。しかし、晒し脱水工程によって揮発性塩基窒素は減少するが、TBAl値は増加することが考えられる。したがって、凍結貯蔵原料からの晒し脱水肉間の比較的高い値を測定されたこともあって、多脂肪の原料魚を凍結貯蔵して使用する場合には脂質の酸化防止について考慮する必要があると思われる。

晒し肉の脱水性と原料魚の鮮度

晒し肉の脱水性は、晒し肉の含水率が低下するが、加圧脱水肉の含水率にはそれほどの差がみられなかったことから、脱水時の加圧力を増大させることによって脱水性の低下を補うことができるようである。しかし、氷蔵4日目及び生肉の分散は、肉質の軟化を示し、その速度は魚体の大きさによっても異なることが予想されるが、加圧機やスクリュープレス等による圧縮調整脱水方式の場合は、歩留りの大幅な減少を来すことになる。また、凍結貯蔵原料の場合、晒し肉の分離率が30日間の貯蔵後も水揚げ当日の生鮮原料の場合とほとんど変わらず、水揚げ肉の含水率及び歩留りからみても、氷蔵原料からの晒し肉に比べて脱水しやすい。なお、清水晒しの場合はアルカリ塩水晒しに比べて脱水しやすいが、冷凍晒し脱水肉とした時にドリップ量が多い。晒し肉の脱水性からみた、30日間の凍結貯蔵原料魚の鮮度は良好であるが、氷蔵原料の場合は脱水性とともに脱水肉の歩留りを勘案すると、氷蔵3日が鮮度良好な範囲と思われる。

冷凍落し身ブロックの品質と原料魚の鮮度

氷蔵原料からのものは、圧出水分、加熱ドリップが凍結貯蔵原料のものに比べて多く、ゼリー強度は氷蔵日数とともに低下し、結着性は氷蔵3日後には低下した。凍結貯蔵原料からのものは、ゼリー強度は貯蔵7日後に水揚げ当日の約半分に減少したが、その後30日間は変わらず、結着性は30日後も水揚げ当日のものとほとんど同様で、低下はみられなかった。したがって、結着性からみると、30日間の凍結貯蔵原料の鮮度は良好であり、また、氷蔵原料では氷蔵2日が鮮度良好な範囲と思われる。

以上の結果から、サバ冷凍落し身ブロック製造原料魚の鮮度は、晒し肉の化学成分及び脱水性と歩留率並びに製品のブロック肉の結着性等からみて、氷蔵原料の場合は氷蔵2日以内がよく、また凍結貯蔵原料では30日間貯蔵のものも良好であった。なお、氷蔵原料の場合は魚体の大きさの影響について、また凍結貯蔵原料については脂質の酸化防止を考慮するとともに、より長期間の貯蔵についても検討するこ
とが必要と思われる。

要約

サバ冷凍落し身ブロックの製造管理に資するため、
水蔵4日間及び凍結貯蔵30日間の原料サバを用いて
冷凍落し身ブロックの製造を行ない、落し身及び塩
し脱水肉の揮発性塩基窒素、TBA値等の化学成分、
塩し肉の脱水性と歩留、ブロック肉の着色性等から
原料サバの良好な鮮度範囲について検討し、次の結
果が得られた。
1. 落し身及び塩し脱水肉の化学成分の分析結果か

文献

1）水産庁研究部研究課，1978：昭和52年度多獲性
赤身魚の高度利用技術開発研究成果の概要，6，
215-252。
2）同上，1979：昭和53年度多獲性赤身魚の高度利
用技術開発研究成果の概要，10-11，197～198。
3）E. G. Bligh and W. J. Dyer, 1959: A Rapid
Method of Total Lipid Extraction and Purification.
Can. J. Biochem. Physiol., 37, 911～917。
4）S. Konosu, K. Watanabe and T. Shimizu,
1974: Distribution of Nitrogenous Constituents
in the Muscle Extracts of Eight Species of Fish.
Bull. Japan. Soc. Sci. Fish., 40(9), 909～915。
5）細貝祐太郎，1972：食品衛生検査指針I（厚生

—42—