マダイ稚仔のシオミズツボウムシ摂餌量*

北島 力・福所邦彦・岩本 浩・山本博敬

Amount of the Rotifer, Brachionus plicatilis, Consumed by Red Sea Bream Larvae, Pogrus major

Chikara Kitajima, Kunihiho Fukusho, Hiroshi Iwamoto
and Hiroyoshi Yamamoto

海産魚の種苗生産では、その初期飼料としてシオミズツボウムシ Brachionus plicatilis O.F. Muller（以下ウムシとする）、浮遊類を主とする甲殻類プランクトン等が用いられているが、実用的な量産では飼料生物の必要量をあらかじめ知り、計画的に生産することが重要になる。そのための基礎資料として、マダイ Pogrus major (T. and S.) 仔稚魚が、各種成育段階で摂餌するウムシの量を明らかにする目的で本研究を行った。

報告に当って、実験の一部で御協力いただいた長崎市水産種苗センター永池健次郎技師に謝意を表する。

材料および方法

成長に伴う消化管内のウムシ個体数 対象6トン水槽に、ふ化仔魚約10万尾を収容して、1974年4月24日から5月19日までの25日間飼育した。この間、飼育槽中のウムシの密度を4個体/ml以上に保つように、毎日9時と16時に添加した。この過程で、3日毎に午前10時に20尾ずつ取上げ、4%ホルマルイン海水で固定後、全長の測定と消化管内のウムシ数を算定した。

期間中の水温は、16.9～20.2℃、塩素量18.8～19.4%、ph8.80～8.59、また溶解酸素飽和度は9.8～12.4%の間で推移した。

日間摂餌量 成長段階別の日間摂餌量を求めるため、4回の実験を行なった。すべて30ミリパクライト水槽を用い、表1のように、1槽当たり1000～2000尾の仔稚魚を収容した。これに一定量のウムシを添加し、1～2時間毎に飼育槽中のウムシの減少数を24時間に亘って調べ、1尾当たり24時間の平均摂餌数を求めた。摂餌によって、ウムシの密度が一定以下に減少すると、その密度一定量のウムシを新たに添加した。また、ウムシの自然増減をみるために、仔稚魚を入れないウムシだけの水槽をプランクトンとして設け、実験水槽と同様にウムシの密度の推移を調べた。各水槽は自然光下（室内）に置いたが、第3次および第4次実験では、終夜点灯した蛍光灯下(約2500 Lux)で実験した。各水槽には、20万～30万個体/mlの密度でクロレラを添加し、止水でゆるやかな通気を行なった。各測定時に、水槽表面の照度と水温の測定を行なった。

* 本研究の一部は、昭和49年度日本水産学会九州支部第1回例会で発表した。

** クロレラで培養したウムシを使用した。
結 果

成長に伴なう消化管内ワムシ個体数の変化 調査した全個体についての 全長（L）と消化管内ワムシ数（fa）の関係は、図1のように、同じ大きさでも個体間の変異が極めて大である。しかし、プロットの上限を結んだ線（図の点線）は、全長の伸びに従って指数的に増加し、近似的に

\[fs = 0.1144L^{3.4353} \]

で表すことができる。これは、全長における上限線であるから、仮に溝腹量とする。また、全長0.5mm間隔毎に含まれる個体の、平均消化管内ワムシ数（fa）をプロットすると、図1の点線と結線のようにあり、全長との関係

\[fa = 0.02966L^{3.8167} \]

で表せる。

一方、全長と体重（Wg）の関係を、全長0.5mm間隔毎に無作為に抽出した10個体の平均値で、両対数グラフにプロットすると、図2のように、全長6.4mmと10.8mm辺りで曲折するにつきの3直線で表せる。

\[W_1 = 0.000798L^{4.3814} \]

（L < 6.4mm）（3-1）

\[W_2 = 0.000496L^{3.5890} \]

（6.4mm < L < 10.8mm）（3-2）

\[W_3 = 0.01288L^{3.0365} \]

（L > 10.8mm）（3-3）

図1、全長に対する消化管内ワムシ数および体重に対する比率

図2、仔・稚魚の全長と体重の関係

体溝重量 \(3\mu g^2 \) によって、担取されたワムシの体重比を求めると、図1のように、溝腹量は体重の7～11％、平均担取数は4～5％になる。
図3 仔魚（孵化後7日）のワムシ日間摂餌経過
図4 仔魚（孵化後11日）のワムシ日間摂餌経過
図5 仔魚（孵化後15日）の卵油日間摂餌経過
図6 稚魚（孵化後28日）の卵油日間摂餌経過
日間摺餌量 ふ化後7日目の仔魚（全長8.92±0.34mm、体重0.32mg）を用いた第1次実験（図3）では、プランクのD槽のウムシの密度はほとんど変化していないので、自然増殖はなかったものの見逃した。ウムシの密度を変えた、A、BおよびC区とも、18時から翌朝5時まではそのレベルは変化せず、5時頃から一斉に減少する。ウムシの减少曲線から、1尾1時間当たりの平均摺餌数を計算すると、日の出から日の入りまで飼育して摺餌していると推測される。3〜16個体/mlの範囲ではウムシの密度と摺餌数の間に明らかな関係は認められず、各区とも24時間中に60〜70個体のウムシを摺餌したと考えられる。

ふ化後11日の仔魚（全長5.09±0.26mm、体重1.00mg）を用いた第2次実験（図4）では、プランク（D槽）の推移から、やはりウムシの自然増殖はなかったものと見逃した。各区とも19時頃までウムシの密度は急激に減少し、夜間は横ばいになり、日の出頃から再び減少傾向を示す。

1尾当たりの摺餌数は、120〜140個体と計算され、この実験でも3〜14個体/mlウムシの密度によって摺餌量は変化しなかった。

ふ化後15日の仔魚（全長6.68±0.78mm、体重3.17mg）による第3次実験（図5）では、プランク（D槽）のウムシ密度にやや増加傾向がみられたので、各区の摺餌数の計算の際、ウムシ増殖分を図から読み取って補正した。

自然光下（A、B区）で、夜間摺餌しないのは、前2回の実験と同様であるが、蛻光灯の直下においたC区も日没後は摺餌せず、摺餌量も自然光下の場合とはほとんど変わらない。この実験では、ウムシ密度の高低で摺餌数は470〜730トカ hairstylesが見られた。すなわち、図5のC区にみられるように、2個体/ml前後まで摺餌密度が低下した8〜10時および15〜17時には、他区に比べて明らかに摺餌量が少なかった。

ふ化後28日の稚魚（全長10.05±1.23mm、体重13.7mg）での第4次実験（図6）では、プランク（C区）のウムシ密度の推移から自然増殖はなかったと見逃した。

自然光下（A区）では、やはり夜間の摺餌はみられないが、照明区（B区）では、深夜を除いて夜間も摺餌することが明らかである。各区の摺餌数を比較すると、照明区が約40%多く、その効果が認められた。しかし、照明下でも24時間から4時間までの約4時間摺餌がみられなかった。

以上4回の実験結果を、表1と図7にまとめた。全長と日間摺餌量（F）の関係は、

$$F = 0.3927L^{3.676}$$

（4）

表1 ユムシに対する仔・稚魚の日間摺餌量

<table>
<thead>
<tr>
<th>実験</th>
<th>収容尾数</th>
<th>全長（mm）</th>
<th>体重（mg）</th>
<th>1尾平均摺餌数</th>
<th>1尾平均摺餌量（μg）</th>
<th>摺餌量の体重比（%）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>3.92±0.84</td>
<td>0.82</td>
<td>56〜66</td>
<td>168〜198</td>
<td>52.5〜61.9</td>
<td>18.7〜25.8</td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
<td>5.09±0.26</td>
<td>1.00</td>
<td>122〜144</td>
<td>366〜432</td>
<td>36.6〜43.2</td>
<td>16.8〜22.8</td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
<td>6.68±0.78</td>
<td>3.17</td>
<td>472〜743</td>
<td>1416〜2229</td>
<td>44.7〜70.8</td>
<td>21.3〜23.0</td>
</tr>
<tr>
<td>4-A</td>
<td>1000</td>
<td>10.05±1.23</td>
<td>13.7</td>
<td>1819</td>
<td>5457</td>
<td>39.8</td>
<td>22.2〜23.5</td>
</tr>
<tr>
<td>4-B</td>
<td>1000</td>
<td>10.05±1.23</td>
<td>13.7</td>
<td>2524</td>
<td>7572</td>
<td>55.3</td>
<td>自然光</td>
</tr>
</tbody>
</table>

-109-
で示される。

（3）式、（4）式およびウマシの個体重量 3
μg から、仔、稚魚はその体重の 50％
前後のウマシを 1 日に摂餌すると考えら
れる。

考察

図 1 でみられるように、消化管内ウマシ
数は個体重の変動が大きい。絶食させ
た空腹状態から摂餌させた実験では、30
分後にはほとんど全個体が満腹状態にな
る 3 ）の対して、この実験のように常に
十分量の餌料が存在する場合には、多く
の個体が必ずしも満腹の状態にあるので
はなく、消化管内の餌料量が様々な段階
の個体が混在し、その平均値は体重の 5
％前後である。したがって、満腹すれば
摂餌を止める、ある程度空腹になっても
摂餌するという過程を繰り返していると
推測される。安永 4) はヒラメ稚仔で同様
の現象を観察している。

満腹量は体重の 7 ～ 11％、日間摂餌
量は 40 ～ 70％であるから、1 日に満
腹量の 5 ～ 10 倍を摂餌することになる。

餌料密度を 3 個体 1 、5 個体/ml の範囲で変えても、日間摂餌量はほとんど変らない。しかし、
2 個体/ml 前後まで餌料密度が低下すると、摂餌量は少なくなる傾向があるので、常に少なくとも
3 個体/ ml 以上の餌料密度を保つことが必要であろう。

摂餌は、日の出から日没までの間絶続して行なわれ、暗闇では摂餌しない。夜間に点灯すると、
日令 15 日の仔魚では自然光下の場合と摂餌時間および摂餌量は異ならないのに対し、日令 23
日の稚魚では両者とも増大し、摂餌に対する照眼効果が認められた。この差異は、発育段階によっ
て明暗順応の能力が異なるためと考えられる。

しかし、クロダイ仔、稚魚の摂餌活動に対する照眼効果 3）は、仔魚期のみで期待され、本報のマ
ダイの場合は全く逆の結果がみられている。また、ヒラメ稚仔では、飼育後 2 日と 2 2 日の仔魚
および 4 0 日前後の稚魚で共に照眼により摂餌時の延長効果がみられ 4）

斯様とインダイの仔、
稚魚でも照眼効果が認められている 5）。このように、夜間の照眼が摂餌時間や成長に影響を及ぼす

図 7 全長とウマシ摂餌数の関係
W : 体重, f a : 消化管内平均ウマシ個体数
F : 日間摂餌数
発育段階が、魚種によって異なるのは、稚苗生産技術の面からも興味ある問題であるが、今後照明に対する観察や成長、生存に対する影響等について詳細な研究が必要である。

次に、1日の摂餌量の経時的変化から、朝と午後に摂餌量がやや多くなる傾向がみられるが、そうでない場合もあって、摂餌のリズムはこの実験からは明らかでない。

摂餌量は、全長の伸びに対して指数的に増加し、全長10mmでは約1,860個体のワムシを1日に摂餌する。また、1尾10mmに成長するまでに、1.2〜1.5万個体を摂餌することになる。したがって、10mmサイズの稚魚100万尾を生産するには、1日最大19億のワムシが摂餌されるので、飼育水を1日2回交換すれば、38億のワムシを必要とする。また、それまでの累計はへい死魚の摂餌分まで加えると300億に達することになる。

伏見は、ワムシの日間給餌量を、仔魚の体重の2、4、6、8、160および820％にして飼育し、80％以上の給餌量では、成長と生残率に大差ないことから、適正給餌量を体重の約80％としている。この値から、全長10mmの稚魚100万尾の日間必要量を計算すると、約36億にして上記の値とはほぼ一致する。

このように、稚苗の量産には莫大の量のワムシが必要であり、その生産量が稚苗生産数を決定することができる。

要約

成長段階の異なる仔、稚魚について、ワムシに対する摂餌量を調べて次の結果を得た。

1）全長（Lmm）と消化管内ワムシ数および日間摂餌量の関係は次式で示される

\[
滴腹量 \quad f_s = 0.1144L^{3.4353} \\
\text{平均摂餌量} \quad f_a = 0.02966L^{3.8167} \\
\text{日間摂餌量} \quad F = 0.3927L^{3.676}
\]

2）滴腹量は体重の7〜11％、平均摂餌量は4〜5％になり、日間摂餌量は40〜70％なので、前者の5〜10倍、後者の10〜15倍に当る。

3）摂餌者は日没から日没までの間続して行なわれ、朝と午後にやや多い傾向がみられる。

4）夜間照明すると、全長6.6〜8mmの仔魚で摂餌時間の延長効果はなかったが、10.0mmの稚魚では、深夜を除いて摂餌し、摂餌量は自然光下の40％増になった。

5）100万尾の稚魚を生産するには、1日最大38億、累計約300億のワムシを必要とする。

文献

1）藤田 尋郎，1973：魚類稚苗生産の初期餌料としてのプランクトンの重要性，日本プランクトン学会報，20(1)，49〜53。

2）伏見，1975：稚魚の摂餌と発育（日本水産学会編），4。餌料、恒星社厚生閣，東京，67〜83。

3）北島力：未発表

−111−
5) 清野通康, 平野礼次郎, 1974: 魚類の稚仔魚期における摂食生態についての研究, 昭和49年度日本水産学会秋季大会講演要旨集, 152.
6) 山下金義, 1975: スズキおよびインディ鱼类の飼育における点灯効果, 本誌, 1, 39〜46.