ホンダワラ類の生長

吉田 範秋・西川 博

Growth of some Sargassaceous Algae
Noriaki Yoshida and Hiroshi Nishikawa

ホンダワラ類の生長については、流れ藻からみた兎川らの報告がある。筆者らは沿岸漁場環境の改善、沿岸重要水族の飼料漬藻、生育場の確保などを目標にホンダワラ類およびアカモク・カジメ類の人工稚苗による漬藻造営について研究を行なっているが、漬藻造営に必要なホンダワラ類幼胚の初期生長および成体に至るまでの一連の生長についてはほとんど報告がない。そこで漬藻の造成に先立ってこれらを解明し造成技術開発の一端とするため、ホンダワラ類の人工稚苗の養成を行なった。本報では主にアカモクSargassum horneri, ホンダワラS. fulvellum, ヤツマタモクS. patensの幼胚から成体までの生長について報告する。

材料および方法

表1 ホンダワラ類の採苗月日

<table>
<thead>
<tr>
<th>種類</th>
<th>1971</th>
<th>1972</th>
<th>1973</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>月・日</td>
<td>月・日</td>
<td>月・日</td>
</tr>
<tr>
<td>アカモク</td>
<td>4.26</td>
<td>4.23</td>
<td>5.5</td>
</tr>
<tr>
<td>ホンダワラ</td>
<td>5.12</td>
<td>5.3</td>
<td>5.12</td>
</tr>
<tr>
<td>ヤツマタモク</td>
<td>5.25</td>
<td>5.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

西彼杵郡野母崎町沿岸の原藻から放出卵を採取し（表1）、幼胚をクレモナより系に採苗し、培養したものである。採苗器は塩ビ管製方形枠（36×52 cm）に毛羽織したクレモナ1号より系（36本）を約1000 m巻いたもので、採苗は海水中に水平に重ねた採苗器に幼胚を散布して行ない、そのまま1〜2日静置し培養に移った。培養はコンクリート水槽（2トン）に採苗器を重ねた。初期には止水、後期には流水式とした。培養照度は日中晴天時に5000〜6000 luxである。幼胚の培養中の初期生長は図1に示した。

図1 室内培養中のホンダワラ類幼胚の生長

養成 外洋性海域の同郡三和町川原地先と野母崎町野母港に施設したいかだに採苗器のまま水深0.7〜1.5 m層に吊り下げて養成し
た。養成水深はホンダワラ類の体長の伸長にしたがい上下した。たとえば、川原地先で1972年
に養成したときは、アカモクは7〜10月の間は1.5m層に吊り下げ、その後は深くして4月には
約3mまで下げた。ホンダワラ、ヤツマタモクは1.5m層で育肥が悪かったので10月以降は0.7
〜1.0m層に吊り替ええた。養成期間は主に伸出し後1年間であるが、涸落後の測定、観察のため2
〜3年間におよぶものも生じた。養成中は毎調査日に付着物を除去した。
測定 養成物の体長の測定および成熟、涸落、再生長などの観察は月1〜2回実施した。体長は、
折尺を用い葉状部先端から基部まで、大きいものから10位までのものを測定し、その平均値を大
型群平均体長として表わした。なお、1971年のヤツマタモク、1972年のアカモクは個体別
体長で示した。

結果

アカモクの生長 体長8〜10mmの稚苗を1972年7月18日から川原地先で養成したアカモクの生長を図2に示した。8〜10
月は体長1〜4cmであったが、12月以降急速に生長し、'73年4月下旬に最大体長320
cmに達した。5月中旬には生殖器托上の放出
卵はみられなくなり、体長も280cmに短縮した。6月には生長のおくれた個体も全て根
から枯れ流失した。なお、5月中旬に成体の
根の周囲（水深約3m）に新生幼体がみられ
たが、6月以降消失し吊りロープ上（水深約
0.4m）の個体のみが生き残り、'74年3月
中旬体長150cmに生長した。卵放出は4月
中旬にみられ、5月下旬には藻体が流失した。

ホンダワラの生長 体長8〜11mmの稚苗を72年7月18日から川原地先で養成したものは
12月〜'73年1月に大型群平均体長4〜6cmになったが、2〜5月に2〜3cm、6〜9月に3〜4
cmで、成熟、流失するものはない。これらは10月以降養成層をやや浅くしてから図3の生長を
示した。最大体長は'74年4月中旬58cm、5月中旬62cmで成熟して流失した。生長のおくれ
た群は5月に体長3〜4cmで、その後も流失しない。また、'73年7月5日から養成したものは
12月以降に生長し、'74年5月下旬大型群平均体長37.8cm（最大66cm）に達した。この時も
生長のおくれた群がみられた。

体長3〜5mmの稚苗を'73年6月29日から野母港で養成したものは主枝を食害され8〜10月
に生長がおくれたが、'74年2月以降生長し5月中旬大型群平均体長88.5cm（最大116cm）に
達した。生殖器托は4月中旬からみられ5月中旬に卵放出は終わった。卵放出後は枝や葉は落ち主枝
だけとなり、6〜7月に全て流
失した。生長のおくれたものは
前２者同様流失せず、5月に体
長3〜7cm、7月に6〜10cm
で、分校数が3〜4本に増加し
た。

ヤツマタモクの生長 体長
11〜14mmの種苗を71年7
月16日から野母港で養成した
ものの生長を図4に示した。
'72年1月に体長約5cmのものは5月に150
〜160cmに生長し、成熟した。2〜3月に約
5cmのものは5月に50〜90cm、4月に約5
cmのものは約20cmに生長してにとどまった。
生殖器托の形成、発達は体長50cm以下の中
ではほとんどみられなかった。

体長5〜6cmの種苗を'72年7月18日から
川原地先で養成したものの生長は図5に示した。
8〜12月は大型群平均体長2〜8cmで終粋し、
'73年1月以降の生長期にも10cm以下を示し
たにすぎなかった。その後夏〜秋には体長の短
縮がみられたが、10cm以降養成量をやや浅く
してから生長がみられ、'74年5月下旬に大型
群平均体長59.6cm（最大88cm）に達した。
この時期にも体長5〜6cmの小型群がみられた。

体長4〜5cmの種苗を'73年6月28日から
野母港で養成したものの生長は図5に示したよ
うに、8〜10月にはゆるやかで、'74年1〜
2月以降すみやかとなり5月中旬に大型群平均
体長200.5cm（最大250cm）に達した。5
月中旬に卵の放出は終り、主枝の基部10〜15
cmを残し葉体部は涸落した。その後根や茎から
生じた著枝（体長6〜15cm）と生長のおくれ
た個体（10〜20cm）は越夏中ほとんど生長
せず、秋以降の生長期に入った。
考察

人工種苗を養成したアカモク、ホンダワラ、ヤツマタモクの生長は、夏期8月ごろまではゆるやかで、体長5〜6cmになるが、9〜10月ごろには逆にやや体長の短縮がみられる。その後は水温が下るにつれて生長はすみやかになり、特に冬〜春に急速に生長する。4〜5月ごろ生育限界体長に達し、5〜6月ごろ増殖する様式を示した。3者の成長は夏期はほとんどかかわらないが、秋以降はアカモクが最も早く生長し4月に生育限界体長に達した。ホンダワラはややおくれる。ヤツマタモクはおくれ、2〜3月に急速に生長し5月に生育限界体長に達した。

成熟期は生育限界体長に達する前後にみられる。アカモク、ホンダワラ、ヤツマタモクの順に成熟した。これらの時期、雌株は抽雄に用いた原藻のそれとよく一致している。

淡川らは流れ藻の体長を毎年亘って測定し、8〜9月に若いヤツマタモク、ノコギリモク、ヨレモク、アカモク、ホンダワラ、ジロモクがあり、それぞれ体長約50cmの結果を得ており、これらがさらに生長し春〜初夏にそれぞれの生育限界体長に達するとしている。この若い個体はその年の幼胚から発生したものか、前年発生のものか確かでないが、人工種苗を養成した当時はこのような大型のものは得られていない。ホンダワラ類は卵放出前後にそれぞれの種の特徴をもって増殖し流れ藻を形成するが、流れ藻でみられる8〜9月の若い個体は、ヤツマタモクでは増殖後に残った根や茎から再生する群と生長のおくれていた群が生長したものではないかと思われる。その年の幼胚から発生、生長した群ではなぜそうである。ヤツマタモクを主とする天然群落でもこの傾向がある。ホンダワラは成熟した個体は基部から増殖するが、5〜6月ごろ体長8cmの生長のおくれたものがみられる。これらは引続いて夏期を経過して次年度の生長期に大型になり、成熟して増殖するものがみられる。この生長のおくれの群が8月ごろ若い個体となり流れ藻としてみられるのではないだろうか。ホンダワラは従来1年生3)9)4)とされているが、生長を抑制された個体は異なった生態を示している。これは藻場生態学実用的な興味ある問題であるが、天然群落でも同様の生態がみられるのかどうか今後の研究が必要である。

アカモクは基部から増殖する1年生の様式を示し、越夏する群はみられない。本種の成熟期は非常に短く、当地域でも1月に成熟個体が流れ藻でみられ、また、生育限界体長も大きい種類なので、幼胚の早期採苗へ出しうることにより8〜9月に体長50cmになる可能性がある。この点は今後の研究が必要である。

藻場造成についてみた場合、ホンダワラ類の人工種苗の養成あるいは藻場造成中、11月以降は照度であるが9〜10月に体長の短縮、著しい減耗がみられる。夏期の海藻群生と魚介類の食害を考え合わせると、これらホンダワラ類の幼体が飼料として重要な役割を占めるものと思われる。これらの食害は造成完了後の安定した藻場では被害が小さいが、造成途上では重大な問題であり、食害、付着着物の影響の課題、防止法など今後の大きな研究課題である。

ホンダワラ類の当季発生の幼胚はほとんど11月以降、特に12〜3月に急速に生長するので、種苗の出しおくれは藻場造成上あまり問題にする必要はなく、夏期の減耗を考慮すればか

-16-
奈良県佐野地方に生じているホンダワラを例にとって、ヤマタワラの発生状況を調査した。

ホンダワラの発生時期は春〜初夏で、発生したホンダワラは、発生後、後期までに生長する。初秋にやや体長が短縮されるが、11月までに生長し、5〜6cmに達した。

成熟期は4〜5月で、成熟期後の6〜8月、ホンダワラの発生が見られるが、発生数が減少する傾向がある。

発生数は、春〜初夏の発生数が最も多く、発生数がピークを迎える時期は、春〜初夏である。

発生数は、春〜初夏の発生数が最も多く、発生数がピークを迎える時期は、春〜初夏である。

文献

1. 藤川佐保・松田武男・松原正浩・吉田忠生, 1960: 流れ藻の海藻学的研究I, 九大農学
芸雑誌, 17(4), 429~435。
2. 藤川佐保・松田武男・松原正浩・吉田忠生, 1959: 流れ藻の海藻学的研究II, 同誌, 17(1), 83~89。
3. 藤川佐保・松田武男・松原正浩・吉田忠生, 1959: 流れ藻の海藻学的研究III, 同誌, 17(3), 299~305。
4. 吉田範秋・西川博, 1973: 藻場生産増殖に関する研究報告I (長崎水試増殖研究所), 103~106。
5. 吉田範秋・西川博，1974：漁場造成に関する研究，同誌-Ⅱ，117〜124。
6. 吉田忠生，1968：流れ漁の分布と移動に関する研究，東北海区水研報告，第23号，141〜186。
7. 鹿児島水試，1972：昭和47年度アワビ増殖技術研究中間報告書（トコブシ放流追跡，漁場造成），1〜25。