2007年秋～冬期に有明海で多獲されたトラフグ

Takifugu rubripes 1歳魚について

松村靖治・光永直樹

Abundant catch of 1-year-old ocellate puffer Takifugu rubripes in Ariake Sound from autumn to winter in 2007

Yasuharu Matsumura・Naoki Mitsunaga

To estimate the amount of catches in number of 1-year-old puffer in Ariake Sound, market landings data were examined from 2005 to 2009 and market sampling surveys were conducted in 2007. Annual catch in number was highest (1,179 numbers) in 2007 during the survey period (from 2005 to 2009). In 50 samples studied in 2007, 46 individuals were returned hatchery fish and the other 4 wild puffer. And most of the returned puffer were judged to be released in August by the otolith marking with alizarin complexone. Temperature in Winter, 2007 in Ariake Sound was c.a. 1℃ higher than average years and released fish in August was smaller than wild and other released fish. These results suggested that an extraordinary great number of 1-year-old puffer were caught in Ariake Sound in 2007, because the young-of-the-year (YOY) did not leave for offshore during the first winter due to smaller size and higher temperature and recruited to the fishery catch in the sound from next fall to winter.

有明海は瀬戸内海東部海域、関門海峡海域、不破海等と共に、我が国におけるトラフグ Takifugu rubripes の主要な産卵場として知られ、この海域では 4 月上旬～5 月中旬に湾口域に親魚が来遊し産卵が行われる。① 仔幼魚は 9～12 月には幼魚へと成長し、一本釣りや延縄漁業で漁獲され、② 翌年 1 月以降には五島瀬や北松海岸等の外海域～索砲回遊を始めるが、③ 有明海では当歳魚に混じって 1 歳魚がわずかに漁獲されることがある。④ 有明海では、資源の回復を目的に種苗放流を行い、その効果を把握するために漁獲実態調査と追跡調査を実施している。⑤ 2007年の中で 2007 年には、これまでに 1 歳魚が多数再捕され（Fig.1）、解析の結果、そのほとんどが放流魚であることがわかった。本研究では、有明海の全域的な調査により得られた漁獲実態をとりまとめるとともに、1 歳魚の標本解釈や海域系等との関連からその原因について考察した。

方 法

漁獲実態調査 有明海で漁獲されたトラフグ当歳魚が水揚げされる市場は、福岡県の福岡市場株式会社筑後中央魚市場（以下筑後市場を称する）、福岡市場株式会社大牟田魚市場（以
下大牟田魚市場と称する）の2消費地市場、長崎県の島原漁協連合組合（以下島原漁協と称する）、布津町漁業連合組合（以下布津町漁協と称する）、有家町漁業連合組合（以下有家町漁協と称する）の3漁業連合組合および株式会社池田水産長崎市場（以下池田水産と称する）、有限会社千代商店水産市場（以下千代水産市場と称する）、川田水産魚市場（以下川田水産と称する）の3産地市場の計5市場3漁協である（Fig.2）。このうち長崎県内にある3市場3漁協で、全水揚げ日において当歳魚（500g未満）と1歳魚（500g以上）の水揚げ尾数、水揚げ重量、水揚げ金額について調査を依頼した。なお、有明海当歳魚はこの期間で平均体重が250gであることに2）や後述する1歳魚の平均体重からこの区分で両者の区別が可能と考えられる。大牟田魚市場では1歳魚と思われる大型の個体については、仕切り口（委託販売原価）の入り数をもとに1歳魚の水揚げ尾数と水揚げ金額を算出した。水揚げ重量については、当市場から購入した標本の平均体重に水揚げ重量を乗じて求めた。筑後中部魚市場については、漁期や漁法などの市場形態が似ている大牟田魚市場での1歳魚の対当歳魚尾数比が得られ、実数に推定した。

標識放流 Table 1 に解析の対象となった2006年度における職前放流の概要を示した。長崎県の4魚業により、合計6ロット555,700尾が3ヶ所で放流された。放流魚は全数標識付けが行われており、耳石標識のパターン15）（標識回数・標識径等）から、放流魚は事業毎に判別可能であるだけでなく、流通を含め海づくい事業放流魚（放流ロット1〜4）については放流月別にロットの判別が可能であった。

標本収集と解析 2007年9〜12月に布津町漁協、有家町漁協、大牟田魚市場および筑後中部魚市場から2歳魚と考えられるトラフグ50尾を購入した。これら標本を長崎県総合水産試験場に搬入し、全長、体長、体重および耳石標識の区別について測定後、扁平石を取り除いて蛻光顕微鏡下で耳石標識の区別を確認し、耳石標識が確認された

Table 1. Summary of the release-recapture studies of oscellated puffer seeds in Ariake Sound in 2006 year

<table>
<thead>
<tr>
<th>Released lot number</th>
<th>Date of release</th>
<th>Mean total length (mm)</th>
<th>Number of seeds released</th>
<th>Release site</th>
<th>Marking method</th>
<th>Operating body</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9-17 Jun.</td>
<td>82.0</td>
<td>84,000</td>
<td>B</td>
<td>ALC(2)</td>
<td>Nagasaki pref.*2</td>
</tr>
<tr>
<td>2</td>
<td>21 Jun.</td>
<td>75.0</td>
<td>27,000</td>
<td>B</td>
<td>ALC(1)</td>
<td>Nagasaki pref.*3</td>
</tr>
<tr>
<td>3</td>
<td>13-27 Jul.</td>
<td>75.0</td>
<td>352,000</td>
<td>B</td>
<td>ALC(1)</td>
<td>Nagasaki pref.*3</td>
</tr>
<tr>
<td>4</td>
<td>3-10 Aug.</td>
<td>80.0</td>
<td>62,000</td>
<td>B</td>
<td>ALC(1)</td>
<td>Nagasaki pref.*3</td>
</tr>
<tr>
<td>5</td>
<td>9 Jul.</td>
<td>67.7</td>
<td>15,000</td>
<td>A</td>
<td>ALC(3)</td>
<td>Nagasaki pref.*4</td>
</tr>
<tr>
<td>6</td>
<td>18 Jul.</td>
<td>65.5</td>
<td>15,700</td>
<td>B</td>
<td>ALC(1)</td>
<td>Nagasaki pref.*5</td>
</tr>
</tbody>
</table>

*1: Area of Ariake Sound, B: Shimabara coast
*2: ALC, Alizarin complexone and the number indicates the number of times marked and the figure in parentheses indicate the number of each.
*3: Enhance project for stock of Nagasaki Prefecture
*4: Nagasaki long-time conference
*5: Research project for utilizing advanced technologies in agriculture, forestry and fisheries
放流漁については標識の回数および標識の大きさにより放流ロットを判別した。このようにして得られた全標本に占める天然魚および各放流ロットの割合に1歳魚の漁獲経尾数を乗じてロット毎に漁獲経尾数（放流魚については回収率）を漁獲重量、漁獲金額を推定した。

漁況情報の収集 当該での全長組成や漁期、漁況について情報を取りまとめ分析した。

① 当歳時の天然魚および各放流ロットの全長组成 有名海当歳魚漁は12月にほぼ終了し、1月以降は五島漁などで外海域に移動回遊する。2006年12月～2007年1月に放流効果調査で得られた標本資料をもとに天然魚と上記6放流ロット別に全長組成を作成した。

② 漁況と漁獲 主要漁協である布津町漁協の延繩による2006年度当歳魚の漁獲量を個別に集計し、平年（2004, 2005, 2007, 2008年の4カ年の平均）と比較検討した。併せて当歳魚の漁獲経尾数や漁獲経尾数移動に影響していると考えられる明海冬期水温について、終漁期である12月の当歳魚の分布域の近傍で、長崎県総合水産試験場が観測している島原半島沿岸域（Fig.2）の定点における2006年12月～2007年4月の月別水温と平均偏差について集計した。水温については、全長100mmを超出当歳魚は9月上旬から12月頃までの間を外層で過ごすとされていることから11）海底上1mの値を用いた。

漁獲実態 Table2 に2007年の漁獲平均市場別の漁獲尾数、漁獲量、漁獲金額を示した。1歳魚は2007年9月～12月に全市場で1,179尾が漁獲され、漁獲量956.2kg、漁獲金額2,029千円であった。同様な調査で得られた他年の漁獲尾数は2004年49尾、2005年134尾、2006年243尾、2008年151尾、2009年210尾であり、2007年は他年の4.9～8.8倍となり、とりわけ多かった。（Fig.3）漁場別では釣り423尾、延繩756尾と釣取り延繩による漁獲が全体の64%を占めた。

標本の解析結果 Table3 に標本の入手および解析結果を示した。標本は期間中50尾を入手した。標本は平均全長32.5±2.5cm、平均体重658±30gであった。胸筋切断標識や耳石標識から解析した結果、50尾の内天然魚が4尾、46尾が放流魚であった。放流魚の内訳は、放流ロット3：9尾、放流ロット4：37尾となり、他の4放流ロットは検出されなかった。1歳魚全体に引き延ばした各ロットの総漁獲尾数は天然魚:77尾、放流ロット3：207尾（回収率：0.66％）、放流ロット4：

Table 2. Catch of 1-year-old puffer in number, in weight and in sales per fish market in 2007

<table>
<thead>
<tr>
<th>Type of fisheries</th>
<th>Fish market</th>
<th>Fishing season</th>
<th>Catch in number</th>
<th>Catch in weight (kg)</th>
<th>Catch in sales (1000 yen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angling</td>
<td>Omuta, Chikugochubu</td>
<td>Sep.-Dec.</td>
<td>423</td>
<td>343</td>
<td>677</td>
</tr>
<tr>
<td>Longline</td>
<td>Futsucho, Ariecho</td>
<td>Nov.-Dec.</td>
<td>756</td>
<td>613</td>
<td>1,352</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1,179</td>
<td>936</td>
<td>2,029</td>
</tr>
</tbody>
</table>

Table 3. Outline of 1-year-old puffer samples purchased at the markets

<table>
<thead>
<tr>
<th>Fish market</th>
<th>Number of sample</th>
<th>Mean total length (cm)</th>
<th>Mean body weight (g)</th>
<th>Otolith examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omuta, Chikugochubu</td>
<td>19</td>
<td>31.0</td>
<td>540</td>
<td>Number of wild: 1 0 0 2 17 0 0</td>
</tr>
<tr>
<td>Futsucho, Ariecho</td>
<td>31</td>
<td>33.4</td>
<td>733</td>
<td>Number of released lot number: 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Total (average)</td>
<td>50</td>
<td>32.5</td>
<td>658</td>
<td></td>
</tr>
</tbody>
</table>

Fig.3. Annual change for catch in number of 1-year-old puffers in Ariake Sound.
魚や他のロットに比べて平均全長が2.2～5.2cm小さく、最も小さな体サイズであった。

dd当時の漁況 Fig.5 には布津町漁協における2006年度の旬別の漁獲量について平年と比較して示した。平年は10月下旬から漁獲が始まり徐々に減少しながら12月下旬には漁獲終了するが、2006年度は1月にも漁獲がみられ1月末（24日）まで漁が続いた。さらに島原半島沿岸域の水温をFig.6に示したが、12月は平年並みであった水温は1月から3月には平年より1℃以上高い値であった。

Fig.4. Frequency distributions of total length of wild and released puffer obtained by the survey in 2006 year.
等の外海域へ索餌回遊を始め、その年の10月以降には外海域で延繰漁業により1歳魚として漁獲される。外海域とほぼ同じ時期に同じ年齢群である1歳魚が有明海で漁獲されるためには当歳魚が外海へ移動せず湾内等に滞留し、秋期以降に当歳魚と同時に漁獲したことが想定される。漁獲された1歳魚のうち、天然魚は全体の6.5%とわずかであった。それ以外は放流魚であったが、標識の解析結果では昨年に放流した6放流ロットのうち、わずか2ロットのみ検出されており、放流尾数を考慮すると偏りがある結果となった。さらにこの2ロットで回収率を計測すると放流ロット4が放流ロット3の2倍以上に相当した。放流ロット4が漁獲全体の70%以上を示したことを考慮すると、2007年の1歳魚の多数は、放流ロット4が選択的に加入したことによる特異現象と言うことができる。このロットは、放流群の中で最も遅い8月に放流したグループである。有明海では、放流時期の遅れした個体は当歳時の漁獲加入サイズが小さい傾向がある。放流ロット4は、2006年当歳時の全長は天然魚や他の放流ロットに比べて著しく小さく、終漁期で200g以下と既往の調査にない小型サイズであった。このことから、体サイズの最小化が当歳魚の外海への移動や回遊を阻む要因となり、有明海での滞留に影響したことが考えられる。しかし、放流魚と同様に2004, 2005, 2007年においても一部が8月に放流されており、これらについても体サイズの最小化が確認されている。このことから、2007年の1歳魚の渔獲率が134尾を243尾と少ないことから、放流時期が主な原因とは考えにくい。トラフグ当歳魚の移動に影響する環境要因として水温が考えられており、15〜16℃で漁獲が減少し、16℃を境に水温低下の影響を外海の沖合や湾口部へ移動する。また、魚体重が概ね250g以上の11〜12月になると15℃以下の海域では漁獲台数が減少せず、海域の大部分が15℃を下回る12月には漁獲する。有明海中央部では、1〜2月の水温が生息限界水温である11℃を下回る9〜10℃まで下がる9℃付近を避けるために外海へ移動するとされている。これに対して、2007年は漁期が早めに始まったと通常の漁期が早めの1月まで続いた。2007年1〜2月の漁場水温の水温は、2005年以降では最も高く1月の15℃以上高めに12℃以上を示し、生息限界水温を上回る水温であった。これらを考慮すると、2007年秋期に多数漁獲されたトラフグ1歳魚は、当歳魚の移動期に有明海が生息限界水温より高めに推移したことに加えて、外海への移動期の水温が小さすぎたことなどの要因が複合して、放流ロット4を主体とした当歳魚が外海へ移動せず、冬期の高水温により有明海遠淵部へやや滞留・生残し、これが秋期以降に1歳魚で加入したと考えられた。このような有明海での1歳魚の加入については、外海移動期の水温や水温の影響が重要な役割を果たしていることがわかったが、引き続きモニタリングを行い海況と加入に関連を調べるとともに、1歳魚の冬期〜夏期における生息場所やそれ以降の回遊および産卵加入の実態解明が今後の課題である。

謝辞

本研究をまとめるにあたり、原稿を校閲して頂いた京都大学フィールド科学教育研究センター舞鶴水産実験所の山下 洋教授に心から感謝申し上げる。

文献
1) 藤田矢郎：フグ類の形態の発達と生活史「日本近海のフグ類」水産研究叢書 日本水産資源保連協会 東京, 1983, pp.50-90.
2) 松村隆治：有明海におけるトラフグ川町魚 Takifugu rubripes の漁業実態．日水誌，71，797-804(2005)。
3) 山口県、福岡県、長崎県、三重県、愛知県、静岡県、秋田県：回帰型回遊性種(トラフグ)．平成
12) 平成13年度資源増大技術開発事業報告書、長崎県、長崎、福岡1-10(2001).
4) 山口県、福岡県、長崎県、三重県、愛知県、静岡県、秋田県：回帰型回遊性種（トラフグ）．平成13年度資源増大技術開発事業報告書、福岡県、福岡、長1-13,三重1-13(2001).
5) 山口県、福岡県、長崎県、三重県、愛知県、静岡県、秋田県：回帰型回遊性種（トラフグ）．平成14年度資源增大技術開発事業報告書、山口県、山口、福岡1-11,三重1-13,愛知1-12(2002).
6) 山口県、福岡県、長崎県、三重県、愛知県、静岡県、秋田県：回帰型回遊性種（トラフグ）．平成15年度資源増大技術開発事業報告書、福岡県、福岡、長1-13(2003).
7) 山口県、福岡県、長崎県、三重県、愛知県、静岡県、秋田県：回帰型回遊性種（トラフグ）．平成16年度資源増大技術開発事業報告書、福岡県、福岡、長1-13(2004).
8) 長崎県：平成11年度長崎県総合水産試験場事業報告、長崎県、長崎,27(2000).
9) 長崎県：平成16年度長崎県総合水産試験場事業報告、長崎県、長崎,57(2005).
10) 長崎県：平成17年度長崎県総合水産試験場事業報告、長崎県、長崎,52-54(2006).
11) 長崎県：平成18年度長崎県総合水産試験場事業報告、長崎県、長崎,64-66(2007).
13) 長崎県：平成20年度長崎県総合水産試験場事業報告、長崎県、長崎,53-56(2009).