学位論文

「天草灘・五島灘陸棚縁辺部における残差流の構造と変動
およびそのカタクチイワシ漁況との関連」
(Structure and Variation of Tidal Residual Currents in the Continental Margin of Amakusa-nada and Goto-nada in Relation to Anchovy Catch Fluctuation)

長崎大学大学院
生産科学研究科 システム科学専攻

高木信夫
第1章 緒言
1.1 五島瀬および天草瀬の海域的特徴
1.2 九州西岸（橘湾および西彼地区）のカタクチイワシの漁況
1.3 本研究の目的

第2章 天草瀬・五島瀬の流況と海況
2.1 材料と方法
2.2 結 果
2.3 考 察

第3章 安定同位体比を用いた橘湾および西彼地区におけるカタクチイワシの加入起源の検討
3.1 材料と方法
3.2 結 果
3.3 考 察

第4章 橘湾および西彼地区におけるカタクチイワシの漁況変動
4.1 材料と方法
4.2 結 果
4.3 考 察

第5章 結 論

謝 辞

引用文献
第1章 緒言

1.1 五島灘および天草灘の海域的特徴

1.1.1 地理的、地形的特徴

長崎の西に位置する五島灘は、福江島・宇久島などの5つの主島と大小148の島々からなる五島列島、長崎県西彼杵郡半島及び平戸島によって四方を囲まれた海域である（Fig.1.1）。また、海底地形の大部分は200m以浅の大陸棚で占められており、南部に開けた陸棚縁辺部で外海（東シナ海）とつながっている。

一方、天草灘は五島灘の南東方向に位置しており、野島崎半島と天草半島および橋湊にて囲まれ、五島灘と同様に海底地形の大半が200m以浅の大陸棚で占められている。両灘で陸棚谷が発達しているため、海底の形状はいずれも非常に複雑である。さらに、両海域ともに生産性の高い海域として知られ、アジ・サバ・イワシ類をはじめとした多くの魚類が棲息している他、沿岸部にはアイエビ・アワビ・ウニなどの産卵場に好適な天然礁が形成されており、古くから各種の漁業が盛んである。

1.1.2 五島灘・天草灘周辺海域の海況

五島灘周辺海域については古くから海洋観測が実施されており、その海況特性を把握するための資料整理が随時行われてきた。ときに水温・塩分のデータは、海況の解析に広く用いられている。水井（1954）は海洋気象台が実施した1947～1951年の観測資料をもとに、五島灘における水温と塩分の年変化を分析し、1952年に五島灘周辺の海況は対馬暖流の消長のみでなく、大陸冷水帯の影響を大きく受けていいることを示唆した。また井上（1981）は、長崎県水産試験場の観測資料を用いて五島灘の水温・塩分分布の一般的な特徴を述べている。すなわち、五島灘の表面水温と塩分は長崎側と五島側で低く中央部で高いが、年間を通してその差は小さく、五島灘全体がほぼ同一系統の水塊で占められていること、五島灘は対馬暖流域に似た状況を呈しており、対馬暖流の分岐状況や橋湊から流出する沿岸水の影響などが五島灘の海洋構造を複雑にしていることを示した。

さらに山本（1999）は、長崎県水産試験場の1967～1997年の海洋観測資料をもとに、五島灘を構成している対馬暖流により北流する水塊が沿岸水の季節的な消長を示した。それに基づけば、夏期には対馬暖流の流れが強くなるとともに表層には低塩分水が広がり、そのため中に層家-leggedな塩分躍層が形成される。その後秋季に鉛直混合が始まり、冬季には塩層から底部まで均一な水温・塩分化が形成され、それが春早まで持続するとしている。さらに、水温・塩分の標準偏差の変動から、五島灘における水温の年変動は塩分の年変動より大きく、水温の変動が対馬暖流系水の五島灘への流入勢力の判断に重要であるとしている。

このように、五島灘周辺海域の水温・塩分の分布変動など海況変動の実態については検討結果がいくつか報告されているが、海況変動のメカニズムについては、今後の課題である。一方、天草灘周辺海域の海況については、中村（1990），小笠ほか（1994）のきわめて断片的な報告があるだけで、その変動実態はほとんど明らかにされていない。

1.1.3 五島灘・天草灘周辺海域の流況

五島灘周辺海域の流れは、漁場形成や卵・仔稚魚および各種生物の輸送に関与
し、当該海域の生産性に大きく影響していると考えられる。その変動の実態やメカニズムを解析することは水産学上極めて重要である。五島灘周辺海域において、カタクリアイワシ卵・仔稚魚の輸送に関する表層流の調査が報告されている（玉井, 1970, 長谷川, 1975）。玉井(1970)は、1967年7月に野母崎半島-天草下島間に入撃した漂流物の大部分が北上した後に、西彼杵半島-平戸周辺に漂着したことと報告している。また、長谷川(1975)は、天草西方向に入撃した漂流物を1昼夜追跡調査し、野母崎半島-天草下島間における北上流の存在を示している。一方、赤松（1950）は五島灘で夏季および秋に行った1日間の保留測流結果から調和解析により潮汐残差流（平均流）を推算し、冬季は時計回りであるが5月頃から反転し、反時計回りの流れとなり、さらに10月頃に再び時計回りの流れになると推察している。

この五島灘における残差流については、近藤（1985）、宮地（1991）は概ね対馬暖流から派生した時計周りの環流と幅海で南下する流れであるとの見解を示いている。さらに小田巻（1980）は、1979年と1980年に入撃で実施したそれぞれ15日間の保留測流結果から、両年平均流の渦度が反対であることを示し、五島灘の残差流が東シナ海の高潮の強さや流れの構造によって大きく変動していることを指摘している。森勇（2000）は、連続水温観測の結果から九州西岸に沿って北上する暖帯の存在を示唆するとともに、人工衛星熱赤外線画像を用いて、黒潮北縁部に発生する前線波動から分裂・北上する暖帯の経路の分岐を試みている。以上のようなことから、当該海域の流況は、対馬暖流および黑潮の影響を受けて複雑に変動しているものと推察され、その実態や変動のメカニズムについてはまだ不明の点が多い。

卵・仔稚魚の輸送に対する影響という観点からは、往復流である潮汐よりも残差流の果たす役割が重要と考えられるが、残差流の変動を明らかにするためには長期間における流れの観測を行う必要がある。船舶の往来が多く漁業活動が盛んな当該海域では、そのような観測を実施することは極めて困難であり、そのことも当該海域における残差流の知見が極めて少ない一因となっている。

1.2 九州西岸（橘湾および西彼地区）のカタクリアイワシの漁況

カタクリアイワシ（Engraulis japonicus）は広く周辺に分布し、とくに東シナ海では湾海・黄海の資源量が大きいことなどが報告されている（Iseki, Shimizu, 1997; Iversen et al., 1993; Ohshima, 1996）。九州西岸域においてカタクリアイワシは、成魚のみならず仔稚魚期から稚魚期かけて水産資源として漁獲利用されており、仔稚魚期はピラス干しの原料として、また稚魚・成魚は煮干しや塩干しの原料として用いられている。

長崎県農林水産統計に基づけば橘湾地区および西彼地区のカタクリアイワシの漁獲量は、1970年代から1980年代にかけてマイワシ漁獲量の増加に伴い減少し、その後西彼地区では1987年から概ね横ばい、橘湾地区では1996年から漸増にとどまっている。しかしながら、1990年代以降マイワシの漁獲量が皆無となったために、カタクリアイワシは両地区の煮干し加工に関連した漁業者や水産従事者の重要な漁業対象種となっており、その漁況動向が注目されている。

しかし、漁況に影響を及ぼすと考えられる九州西岸域におけるカタクリアイワシ
の回遊や資源加入の実態については不明な点が多い。例えば、黄海や東シナ海の大陸棚縁辺部を回遊している群れの存在（Iversen et al., 1993）や、朝鮮半島の東岸および西岸を季節回遊している群れ（Chang et al., 1993）と、周年に渡り日本沿岸域で漁獲される群れとの違いについても十分に解明されていない。また、九州西岸域のカタクチイワシについては、1970年代に橘湾をモデル地区として西海区水産研究所と長崎県水産試験場が共同調査を行っているが（下村ほか, 1970）、成魚の回遊については漁業者の聞き取り情報の域を出ず、また資源加入機構についても周辺海域の海況・流況の知見が希薄であったため、ほとんど言及されていない。

1.3. 本研究の目的

上述したように、五島瀬沿岸や天草瀬の北東に位置する橘湾で漁獲されるカタクチイワシの漁況変動、とくに資源加入量や漁場への来遊量を決定する上で、流れによる卵・仔稚魚輸送が大きな影響を及ぼしていると考えられる。しかしながら、卵・仔稚魚の輸送に直接関わる天草瀬・五島瀬の流況については観測データは極めて少なく、とくにカタクチイワシの主な漁獲期にあたる冬季〜春季の流れに関する知見はこれまでほとんど得られていない。

そこで本研究では、天草瀬および五島瀬の流況とそれに関連する海況の変動実態と変動のメカニズムについて検討するために、当該海域と外海域をつなぐ陸棚縁辺部において船舶を用いた調査を繰り返し行い、とくに卵・仔稚魚輸送に貢献すると考えられる残差流の構造と変動の実態を明らかにしようとした。また、上記とカタクチイワシの漁況変動との関連について検討を加えることにより、漁況予測精度の向上や資源評価に資する基礎的な知見を得ることを目的とした。
第2章 天草灘・五島灘の流況と海況

五島灘東部に位置する西彼地方や天草灘の北東方向に位置する鵜沼では、いわし類を漁獲対象とする中小型まき網等の漁業が営まれており、近年は春季に漁獲される。概念体長3～6cmの小型のカタクイワシが重要な漁獲対象となっている。下村ほか（1970）は、橿沼で漁獲されるカタクイワシが主として仔稚魚期に天草灘・五島灘から供給されることを示唆しており、その漁獲には五島灘・天草灘の流れの状況が重要な関与をもつものと考えられる。しかしながら、船舶の往来が多く漁業活動が盛んな当該海域では、保留区を用いた観測を長期に実施することは困難なものから、五島灘・天草灘における流れ、とくに卵・仔稚魚の輸送に重要と考えられる残差流に関するこれまでの観測は非常に限られている。

たとえば、小田巻（1982）は秋季に実施した保留区による測流結果から、五島灘の恒流は比較的安定している。天草灘や五島灘西部においては時々約35cm・s⁻¹の北上流がみられることが報告されているが、いわし類の主な産卵期にあたる冬季～春季における当該海域の残差流についての報告は全くない。

また、当該海域では他に漂流振や漂流ハガキなどを用いた調査が実施されており（玉井ほか，1970、永谷ほか，1995）、永谷ほか（1995）は1月～4月に実施した漂流ハガキ調査の結果をもとに、冬春季の季節風の変化に起因する五島灘の流れの変化が、マイワシの卵・仔稚魚の輸送に影響を及ぼす可能性があることを指摘している。しかしながら、これらの結果は海表面の流れの概況を示しているにすぎない。このように、冬春季における流れについては観測データそのものが非常に少なく、その構造や変動についてはほとんど知見が得られていない。

そこで、本章では五島灘南部・天草灘海域において、潮汐成分除去を目的とした船舶設置型超音波潮流計（以下ADCP）による測流観測を繰り返し実施し、残差流（日平均流）の変動実態を明らかにするとともに、それを測流時の多項目水質測定機（STD）による水温・塩分観測結果や人工衛星画像に基づく海面水温分布と対応させることにより、残差流の変動と水塊構造との関連性について考察した。

2.1 資料と方法

2.1.1 係留測流観測

潮流に対する平均流の大きさを見積もるために、調査対象海域のうち係留観測が可能な野母崎半島沿岸部のMO点（Fig.2.1）で2006年5月9日から6月8日まで係留測流観測を実施し、測流結果を和解分析することにより潮流調和定数を算出した。測定は電磁流速計（ACM16M：アレックス社製）を、MO点の60m深（海底上25m）に設置して実施した（Fig.2.2）。なお、6月6日以降のデータにはバッテリー切れが原因と考えられる異常値が見られたことから、5月9日から5月24日までの15日間のデータについて和解解析を行った。

2.1.2 天草灘および五島灘におけるADCP観測および残差流の算出

潮流成分の除去を目的として、加藤（1988）の方法に従い、船舶設置型ADCPを用いて24時間50分で同一コースを4往復する測流観測を実施した。潮流が日周潮流と半日周潮流の和で
あるとの仮定のもとで、この方法により観測ライン上の定点で得られた 8 回の観測値を合計することによって、潮流の影響を除去することができる。前述する測線 A2 の観測には長崎県総合水産試験場の調査船鶴丸、測線 A1 および測線 B の観測には長崎大学水産学部の練習船鶴洋丸に搭載されている ADCP をそれぞれ用いた。調査海域と調査点を Fig.2.1 に、また調査日時等の詳細を Table 2.1 にまとめて示した。

Table 2.1. The information of observation in the Amakusa-nada and Goto-nada.

<table>
<thead>
<tr>
<th>The area of the sea</th>
<th>Date</th>
<th>Name of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amakusa-nada</td>
<td>13-14</td>
<td>April 2004</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>10-11</td>
<td>May 2005</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>23-24</td>
<td>May 2005</td>
</tr>
<tr>
<td>Goto-nada</td>
<td>23-24</td>
<td>May 2005</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>10-11</td>
<td>January 2006</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>24-25</td>
<td>January 2006</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>10-11</td>
<td>January 2007</td>
</tr>
<tr>
<td>Amakusa-nada</td>
<td>13-14</td>
<td>March 2007</td>
</tr>
</tbody>
</table>

ADCP データの解析処理は、調査船搭載コンピュータにバンドルされた RD Instruments 社製ソフト Win River もしくは Vmdass から得た所定層毎の流れデータ（バイナリデータ）と GPS データ（NMEA : テキストデータ）を用いて行った。得られたバイナリデータはユーザーズマニュアル（RD Instruments 社製）に記載されたバイナリデータフォーマットに従いアスキーデータに変換した。その後、ADCP データはすべてトランスデューサーとジャイロコンパスの不整合による誤差を補正し（Joyce, 1989）、Fig.2.1 に示し 5, 7, 9, 11, 13）、また長崎大学練習船鶴洋丸搭載の CTD（Sea Bird 社製、SBE-911 plus）で測線 B 上の 5 定点（Stns. K1, K3, K5, K7, K9）について、それぞれ水温と塩分の観測を実施した（Fig.2.1）。

以上に加えて、調査海域を含む広域の海面水温分布について検討するため、人工衛星 NOAA（National Oceanic and Atmospheric Administration）に搭載された改良型高分解能照射計（AVHRR：advanced Very High Resolution Radiometer）の海表面温度分布（MCSST：Multi-Channel Sea
Surface Temperature) の日毎合成試赤外画像(BSOフォーマット)を、農林水産省農林水産研究情報センターが運営する農学情報資源システム（AGROPEDIA）の気象衛星画像データベースから取得した（http://wesidab1.wesidab.agropedia.affrc.go.jp/cgi-bin/index.cgi、2004年4月14日、2005年5月11日、2005年5月24日、2006年1月11日、2006年1月25日、2007年1月11日、2007年3月13日）。なお、得られたデータはGISソフト（マリンエクスプローラー、環境シミュレーション社製）により画像化した。

2.2 結 果

2.2.1 保留測流観測から得られた潮流の評価

保留測流データの調和解析により得られた潮流調和定数のうち大きな振幅を示した 4 分潮(M2,K2,K1,O1)の潮流循環をFig.2.3 a-d に示す。4 分潮の中では半日周潮である M2 分潮が最大卓越しており、主軸方向は北東から南西方向、最大流速は 19.9 cm・s⁻¹ であった。また、S2 分潮の主軸も北東から南西方向を示しており、最大流速は 8.1 cm・s⁻¹ であった。1 日周潮の流速は半日周潮に比べて小さく K1 分潮と O1 分潮の潮流模倣の主軸方向の最大流速は、それぞれ 3.6 cm・s⁻¹ と 2.6 cm・s⁻¹ であった。

一方、調和解析により得られた平均流の流速は 6.0 cm・s⁻¹ であり、また潮汐の影響を除去するために 25 時間ボックスフィルターを施して得た平均流についても流速は 1.1 〜15.3 cm・s⁻¹ と M2 分潮もしくは S2 分潮の最大流速に比べて小さかった。

2.2.2 測線 A2 の往復観測で得られた日平均流

測線 A2 で実施したADCP による 24 時間 50 分の往復観測で得られた 30 m 深における日平均流の空間分布をまとめてFig.2.4 に示す。なお、カタクリワシは卵から仔稚期までは表面から 50 m 深に分布するとの報告（桑原・鈴木、1984）を考慮して、ここでは日平均流の代表水深として 30 m を選択した。

2004 〜2007 年の冬季および春季に実施した 6 回の測流結果のうち 5 回は全体に北上流が卓越し、Stn.9 〜 Stn.13 では北ないし東北向きの日平均流が認められた。一方、2007 年 1 月 10 〜11 日は、南下流が Stn.1a 〜 Stn.3 と Stn.11 〜 Stn.13 で認められたが、このときも Stn.4 〜 Stn.10 では北上流が見られた。

橋湛は天草灘の北東に位置しており、測線 A2 の Stn.7 〜 Stn.13 で観測された北 〜 東北方向の日平均流は、橋湛への卵・仔稚魚の輸送に直接かかわる重要な働きをしている可能性がある。

2.2.3 測線 A1, A2 の平均流と水塊構造の対応

橋湛への卵・仔稚魚輸送に重要と考えられる測線 A2 で観測された北〜東北向きの平均流と水塊構造との関連を検討するために、測流時の状況に対応する人工衛星 NOAA の熱赤外画像と、水温と塩分の鉛直断面図に 10 m 深、30 m 深、50 m 深、70 m 深の日平均流を重ね描きを見たものを、測流観測時別に Fig.2.5 〜 Fig.2.9 に示した。なお、熱赤外画像上にも、ADCP による測流結果の中でデータ水深が最も浅い 10 m 深の平均流を併記している。以下、観測年別に結果の概要を記す。
2006年1月10-11日および24-25日（Fig.2.5, Fig.2.6）：1月11日の熱黒外画像をFig.2.5aに示す。観測地帯光に分布していた16℃以上の高水温域（II）から連続する暖水が上部観測範囲内から観測地点や向け100m等深線沿って反時計回りに動き、測線A2のStn.10～Stn.13に達しており、ここからもしくは対流水域の日平均流が認められた。また、対流水域内から観測地点に向かって17℃以上の高水温域（II）が分布していた。さらに測線A2の水温鉛直断面図（Fig.2.6b）を見ると、Stn.5～Stn.13の下層では16℃の等水温線が等深線の構造を示し、その最深部は65m深に達していた（破線の赤枠部分を参照のこと）。Stn.9～13で見られた北もしくは北東向きの日平均流の流速は10m深では11～20cm/s、70m深では24cm/s1～28cm/s1であり、暖水塊の鋭部にも強い北～北東向きの流れが認められた。次に1月26日の熱黒外画像をFig.2.6aに示す。対流水域内から観測地点に向かって分布していた高温域（III）から連続した暖水が上部観測範囲内から観測地点や向け沿岸に沿って細長い舌状に伸びている様子が分かる。この暖水は測線A2のStn.9～Stn.13に達し、Stn.5～Stn.7とStn.9～Stn.13には北向きの流れが認められた。水温鉛直断面図（Fig.2.6h）をみると、このときStn.9～Stn.13において17℃以上の暖水塊は70m深まで達しており（破線の赤枠部分）、20m以浅の17.5℃以上の水塊（塩分は34.6）で最大34cm/sの北向きの流れが認められた（破線の青枠部分）。

2007年1月10-11日（Fig.2.7）：1月11日の熱黒外画像をFig.2.7aに示す。32°N以南、129°E以西に雲域があるため明瞭ではないが、18℃以上の高温域が対流水域内から観測地点や向け広く分布し、32°5′N、129°30′E～130°Eの海域から対流水域に暖水が舌状に伸び、測線A2のStn.7～Stn.13まで達していることが分かる。このとき、Stn.7～Stn.10付近に北～東向きの日平均流が認められた。さらに測線A2の水温鉛直断面図（Fig.2.7b）によれば、Stn.7～Stn.13には70m深まで17.5℃以上の暖水塊（塩分は34.3～34.4）が認められ、対流水域の日平均流が認められた。Stn.9付近には18℃以上の水塊が60m深まで分布していた（破線の赤枠部分）。

2004年4月13-14日（Fig.2.8）：4月14日の熱黒外画像（Fig.2.8a）をみると、対流水域内から観測地点に向かって分布していた高温域（IV）から暖水が上部観測範囲の北側に細長い舌状に伸び、観測地点内を北東に流れて、測線A2に達している。一方、水温鉛直断面図（Fig.2.8b）によれば、測線A2のStn.11～Stn.13の表層には19℃以上の水塊が認められ、その下層では17.5℃の等水温線が等深線の構造を示し、その最深部は70mまで達していた（破線の赤枠部分）。このときStn.9～Stn.13で見られた北向きの日平均流の10m深および70m深における流速は、それぞれ31cm/s1～40cm/s1および19cm/s1～22cm/s1であった。

2005年5月10-11日および23-24日（Fig.2.9）：5月11日の熱黒外画像をFig.2.9aに示す。32°N以南に雲域があるため明瞭ではないが、32°N～32°30′Nに20℃以上の高温域（V）が分布していた。この高温域は測線A1のStn.1a～eと測線A2のStn.4～Stn.13
に認められ、北向きの日照平均流が見られ
た。高塚県の鉛直的な水塊構造
（Fig.2.9b）をみると、測線 A2 の Stn.7～Stn.9 の層に 20 ℃以上の高水温が
分布しており、その下層には 16 ℃～
19 ℃の等温線が四半とした構造が認
める。16 ℃の等温線の最深部は 80
m 深まで達していた。
2005 年 5 月 23 日～24 日にても、水
塊構造と日照平均流の状況には Fig.2.9 に
示した 5 月 10 日と同様の傾向が認め
られた。
2007 年 3 月 13 日～14 日（Fig.2.10）：亀島
北部海域の 3 月 13 日の熱赤外画像に
10m 深における日照平均流の測定結果を
重ね書きしたものを Fig.2.10a に、また,
Stn.K1～Stn.K9 の水温鉛直断面図に
10m 深、30m 深、50 m 深、70 m 深の
日照平均流を重ね書きしたもの
を Fig.2.10b にそれぞれ示した。熱赤外画像
から、亀島東部に分布している暖水は、
上亀島東から北に向かって舌状を呈して
西薩沿岸まで伸び、さらに西薩沿岸に
沿って北西に伸長し亀島北部海域まで
達していることが分かる。水温鉛直断面
図でも Stn.K5～Stn.K9 の層に
18.0 ℃以上の暖水が見られることから、
そこで観測された北向きの日照平均流（水
深が最大 34 cm・s⁻¹～56 cm・s⁻¹）
は、西薩沿岸に沿って天草灘へ北上する
暖水に対応した流れを示すものと考えら
れる。

2.3 考察

当該海域において、これまで冬春季の
保有観測データに基づいた調和解析に
よって残留流动を推定した例はない。秋季
については、小田巻（1982）が五島灘、
天草灘で実施した保有観測結果を報告し
ている。それによれば 10 月に天草灘
で実施した保有観測データから算出した
M2 分潮は本研究で得られた M2 分潮の
調和定数をもとに考察し、平均流は
M2 分潮の主軸方向の最大流速に比べ
小さいものであった。これらのことからも
観測対象海域である五島灘・天草灘にお
いては、潮流（往復流）の影響が大きい
ことが分かった。このため、卵・仔稚魚
等の輸送にかかわる残留流について検討
するためには、潮流成分を除去することが
必要不可欠であることが確認された。
さらに本研究により、残留流に関する
知見がこれまで非常に乏しかった天草
灘・五島灘南部陸棚沿岸部において、橋
湾へのカマクイイ花枝稚魚等の輸送に
重要な役割を果たしていると考えられる
北へ北東向きの残留流（日照平均流）の実
態を捉えることができた。
この日照平均流の流速は潮流の影響を強
く受けており、時に潮流よりも大きな値
を示すこともある。また、天草灘におい
ては、2004 年 4 月には最大 40 cm・s⁻¹、
2006 年 3 月には最大 56 cm・s⁻¹の流れ
が認められ、五島灘および天草灘で秋季に
観測された 35 cm・s⁻¹以上の北向きの流
れ（小田巻、1982）が、冬春季にもしばし
ば見られることを本研究によって確認さ
れた。また、潮流時の水塊構造と比較す
ることによって、この北向きの日照平均流
は暖水の北上とよく対応していることが
明らかとなった。さらに、水温の鉛直断
面分布から、この日照平均流は表層だけで
なく中・下層においても暖水に対応した
構造を示すことが分かった。さらに熱赤
外画像にもとづく海面水温の平面分布か
ら、上記の北上する暖水は天草灘南西部
域の暖水分布と連続していたものと推察さ
れた。天草灘南方海域に設定した測線
Bでも、表層に18℃以上の暖水が見られ、そこで観測された北向きの日平均流れは、西蔵沿岸に沿って草薙灘-北上する暖水に対応した流れとなっているものと考えられる。この観測結果は測線A2と同時期のものではないが、測線A2で観測された北上流れが草薙灘南方海域からの暖水の北上によるものであることを証明している。

本研究では、ADCPによる24時間50分の測流観測に引き続いて海洋観測を実施しており、また、水塊構造との対応関係を明らかにするため人工衛星画像でできる限り観測日に近い日時のものを使用した。しかし、いずれも全く同時の情報ではないため、流れの日変動が大きい場合には、解析手法上の問題が生じる可能性が考えられる。得られた観測結果に基づけば、観測期間における流れの状況はいずれも持続性が高く、とくに同時性のある人工衛星画像が取得できた2006年1月24~25日の暖水分布パターンにも大きな変化は見られなかった。したがって、本研究で対象としている現象に関して、1日程度の時間スケールの変動性は比較的小さく、本研究で得られた結果は妥当であると判断した。

測線A2で観測された暖水の起源については、観鳥海峡から北上する場合（Fig.2.10a）の他に、観鳥南方の暖水と連続している様子が見られる場合がある。例えば、1ヶ月以内に2回の調査を行った2006年1月は、1月10~11日に測線A2で観測された暖水は観鳥南方に分布する暖水と連続していたのに対し、1月24~25日に観測された暖水は観鳥海峡に分布する暖水と連続していた。そこで、TSダイアグラム（Fig.2.11a）を用いてこの両日の観測結果を水塊構造の面から比較してみた。すなわち、1月11日に観測された水塊を「水塊B」とし、1月25日に観測された水塊のうち、水塊Bよりも高水温・高塩分のものを「水塊A」、低水温・低塩分のものを「水塊C」として、それぞれをFig.2.11aにプロットした。その結果、1月25日にStns.5~7に出現した水塊Bは1月11日に観測された水塊Bに属するのに対し、Stns.9~13に出現した水塊の大部分はそれとは異なる水塊Aに属することから、これらの後を適当に選択された北向きの流れは異なる水塊の移動に対応したものであったことが示唆された。このことは、赤外外観像や暖水鉱物断面図から推察された暖水の起源の違いを裏付けることになる。

森永（2000）は、安定化に設置した水温計による連続毎時観測データと人工衛星の赤外外観像の解析によって、九州西側沿岸域への暖水の伝播に男女島南東縦の他に観鳥海峡および観鳥南方郡のものがあることを示唆している。本研究において流れの変動と水塊構造の対応について検討した結果、草薙灘-五島灘における北向きの流れは観鳥海峡もしくは観鳥南方東北に上る暖水に密接に関連していること、草薙灘-五島灘への物質輸送には九州西岸沿岸に沿う上述の流れが重要であることを新たに示すことができた。

なお、2006年1月24~25日には測線A2に低水温・低塩分の水塊Cが出現している。この水塊は、Fig.2.11bに示した塩分断面分布から分かるようにStns.1a～3の中層から表層に分布しており、2005年5月10~11日調査でもStns.1a～3付近には34.1以下の塩分水が認められた（Fig.2.11c）。これらは、山本ほか（1999）が報告している横流もしくは有明海から草薙灘への沿岸水の流入を示すものと考えられる。
小田巻（1982）は数値解析結果をもとに，五島灘における残差流の変動要因として黒潮変動の影響を指摘している。本研究で示した熱赤外画像からも，測線A 上を北上していた暖水は瀬戸内西方海域から宇治群島東，もしくは瀬戸内海から宇治群島東に分布する高水温域と連続していたことから，黒潮から分派したものである可能性が高いものと考えられるが，その発生機構については不明である。今後，水温・流れ等の連続観測などにより，暖水塊北上機械が解明されることを期待したい。

下村ほか（1970）は，橋湾で実施した短期の海流観測等から推定された流速分布をもとに，五島福江島と上甑島とを結ぶ範囲内の沿岸海域で産卵された卵・仔稚魚が主として橋湾に輸送されると推察している。本研究で明らかとなった天草灘を北上する流れは，甑島近海域の暖水塊と連続した構造を示していることから，この海域における浮魚類の資源量評価や漁況予報を行う上で有用な情報の一つとなるものと考えられる。
第3章 安定同位体比を用いた橋湾および西彼地区におけるカタクチイワシの加入起源の検討

動物の炭素・窒素安定同位体比は、その動物が食べる餌の炭素・窒素安定同位体比を反映している (Deniro and Epstein, 1978; Deniro and Epstein, 1981; Minagawa and Wada, 1984)。このため餌料環境の安定同位体比を地理的に分離することができれば、動物の移動や地理的起源を明らかにすることができる (Hobson, 1999)。例えば、Suzuki et al. (2008) は筑後川でスズキ (Lateolabrax japonicus) の稚魚について高塩分域と低塩分域との間の移動を追跡している。

一方、Tanaka et al. (2008) は、日本周辺のカタクチイワシについて炭素・窒素安定同位体比を調べ、内湾性（沿岸性）と外海性（沖合性）の安定同位体比の違いを明らかにしている。そこで本章では、橋湾と西彼地区で採取したカタクチイワシの安定同位体比を調べ、既往の知見と比較することによりカタクチイワシの移動や、その地理的起源について検討した。

3.1 材料と方法

試験に供したカタクチイワシの標本は、2007年11月から2009年1月に漁獲された計50尾体である(Table 3.1)。まず、カタクチイワシの主な漁場である春季の標本は、2008年の5〜6月（サンプルD-F）に採集した被鱗体長60mm以下のカエリ鰭柄と、季節としては少し遅いものであるが、秋季の標本として2007年12月（サンプルA-C）に採集した被鱗体長90mm以下のカエリ鰭柄である。この中でサンプルAの採集地は有明海、サンプルDの採集地は西彼地区であり、その他のサンプルは橋湾から採集したものである(Fig.3.1)。また、漁業者からの聞き取りに基づけば、秋季とは別れが違うと指摘された冬季に漁獲された標本（サンプルG-J）も比較データとして用いた。

サンプルは、採取後冷凍して実験室に持ち帰った。実験室で解凍した後体長を測定し、背部の筋肉を採取して安定同位体比の分析に供した。

次に、サンプルの安定同位体比分析における脂質含有量の影響を除くことを目的とした脱脂処理について記す。各標本は乾燥冷凍し、その後乳鉢で粉碎してからクロロホルム:メタノール (2:1) によって標本の脱脂処理を行った。脱脂処理を経たサンプルを再度凍結乾燥した後、EA1110-DeltaPlus Advantage ConFlo III System によって燃焼、気体化し^{13}C/^{12}C および^{15}N/^{14}N の測定に供した。なお、安定同位体比は、大気中の窒素を基準物質として以下の式から算出した。

\[\delta^{13}C = \delta^{15}N (\%) = \left[\frac{R_{sample}}{R_{standard}} - 1 \right] \times 1,000 \]

ここで、R は^{13}C/^{12}C および^{15}N/^{14}N の比を示し、R_{sample} はサンプルの測定値、R_{standard} は標準物質の値である。

3.2 結果

安定同位体比分析の結果を Fig.3.2 に示す。特に、\(\delta^{13}C \) が明確に分離され、秋季に採集したサンプルの\(\delta^{13}C \) はすべ
3.3 考察

炭素・窒素安定同位体比は、動物の移動履歴や地理的起源を明らかにする上で有効な手法であり（Hobson, 1999），春季と冬季に採集した標本の安定同位体比の違いは漁獲前の飼環境の違いを示していると思われるが，Tanaka et al.（2008）が行った既往のカタクチイワシの安定同位体比散布図（Fig.3.2）と比較してみると，本研究で安定同位体比が高かった標本，特に秋季の標本であるサンプル A-C は Tanaka et al.（2008）で観測された内湾（沿岸）のものとよく一致していた（δ^{13}C > ca. -17‰, δ^{15}N > ca.11‰）。一方，春季の標本であるサンプル D-F の δ^{13}C の値は，九州西岸外洋域の標本の値（-18‰）と同様で，低めであり，太平洋海域の標本の値（δ^{13}C < ca. -19‰）に比べ少し高い値であった。本研究で得た δ^{15}N についての値は，Tanaka et al.（2008）が示した値（九州西岸外洋域 10‰；太平洋海域 δ^{15}N < ca.9‰）よりも高く，内湾性の値と近いものであった。

本研究で得られた標本とTanaka et al.（2008）が示した値から判断すると，δ^{15}N の値からは明確には言えないものの，δ^{13}C の違いは内湾と外海域の摂餌場所の違いに由来するものと考えられる。このため本研究では，移動パターンについての議論に際して δ^{13}C を使用することとし，加えて δ^{15}N の比較を行うことで，より明確な分離が可能になると考えた。実際に有明海では，動物や一次生産について，δ^{13}C と δ^{15}N の両方を用いた研究例が報告されている（Yokoyama et al.2005；Suzuki et al.2008；Yokoyama et al.2009）。

採集時間や有明海における採集場所に
は違いないものの，Yokoyama et al. (2009) が示した層流の藻類やベントスの値は，本研究で得たカタクチイワシに関する冬季標本のδ^{13}C の値と同じであったことから，冬季標本と有明海の食物網との関連性が示唆される。

Fumamoto et al. (2004) は，沿岸域のカタクチイワシが主に春期〜秋季に産卵すると報告している。本節の研究の中で 2008年の5月〜6月に採集した全ての標本の体長は，60mm よりも小さいことから，これらは春季に発生した魚と考えられる。さらに，これらのδ^{13}C の値は，Tanaka et al. (2008) が示した外洋域のカタクチイワシのδ^{13}C の値と同様に低い値であったことから，2008年の5月〜6月に採集されたカタクチイワシは，春季に外海で発生した後に摂餌しながら，短期間の間に内海の環境に移動してきたものと考えられる。また，サンプル F とサンプル D, E と比べ海奥で漁獲され，安定同位体比も高い値となっている。これはわずかながらであるが，内海で安定同位体比の高い餌を摂取していたことを示すものと考えられる。

一方，秋季の標本は，春季の標本よりも安定同位体比は高く，内湾の特徴を呈している。特に，サンプル A と B は近似していた。このことは，橘湾で漁獲された魚群が，概ね有明海で漁獲された魚群と同じ摂餌履歴を持つことを示唆していると思われる。すなわち，本研究で得られた結果は，橘湾で秋に漁獲されるカタクチイワシが有明海から回遊する，という下村ほか (1970) の仮説を支持したものとなった。なお，先述したとおりサンプル A は 12 月に採集したものであり，秋としては少し時期が遅ものの，秋漁は一般に 10 月と 11 月に漁獲のピークが見られる 9〜12 月を指していることから，上記の結果は秋漁期に適用可能であると考えられる。

また，本研究で得られた秋季の標本の安定同位体比は，長期間内湾に滞在していたことを示唆している。さらに採集時の標本の体長を考慮することによって，これらが夏季〜秋季に橘湾内もしくは橘湾の近傍海域で発生し，橘湾内で成長した可能性を示唆することになる。

下村ほか (1970) は，カタクチイワシ春季発生群の橘湾への加入が橘湾の外海域に由来すると推論していたものの，本研究で実施した安定同位体比の分析結果によて，橘湾で春季に漁獲された小型魚は，夏季〜秋季に漁獲された小型魚とは異なり外洋性を示すことが，すなわち発生場所が外洋であることを明らかにした。西彼地区においても安定同位体比の検討結果より，春季に漁獲されたカタクチイワシの小型魚は外洋性を示した。これらのことから橘湾および西彼地区で春季に漁獲されるカタクチイワシは，いずれも橘湾以外の外海域から主に加入しているものと推定される。
第4章 橘湾および西彼地区におけるカタクチワシの漁況変動

橘湾および西彼地区で獲獲されるカタクチワシは概ねカエリ（体長 4〜6cm）、小羽（体長 6〜8cm）、中羽（体長 8〜10cm）、大羽（体長 10cm<）の4種類別に獲獲物が区分されている。中でも煮干し加工の主原料となり高値で取引されるカエリ、小羽といった小型のカタクチワシが主要な獲獲対象となっている。

橘川（1976）は、橘湾および西彼地区で獲獲される小型銘柄が主に春〜夏秋季に獲獲される春季発生群で構成されているとする報告をしている。しかしながら、マイワシ獲獲量が橘湾の獲獲量の多くを占めていた 1975〜1996 年には、漁況調査の対象がマイワシであったこと、近年の橘湾および西彼地区のカタクチワシにに関する研究が少ないことから、両地区におけるカタクチワシ漁況の変動について検討を行なう際には、1960〜1970 年代に蓄積された知見に頼らざるを得ない状況にある。

一方、第2章では冬季〜春季に橘湾南方に位置する駒場海坂もしくは駒場西南方から天草湾を北上する流れが存在することを実測によって示し、それがカタクチワシの繁殖に重要な役割を果たしている可能性を示唆した。

さらに、第3章では安定同位体比を用いて、橘湾および西彼地区で春〜夏秋季に獲獲されるカタクチワシの産卵地を分析し、獲獲魚および天草湾への流出・拡散の状況を示唆した。しかしながら、橘湾および西彼地区へのカタクチワシの入江経路や魚獲物との関連性について検討された報告は少ない。

そこで本章では、近年の橘湾および西彼地区において春季から夏秋季に獲獲され、外海からの加入群と考えられる春季発生群（カエリ・小羽）に焦点を絞り、その漁況変動について検討を加えることとした。すなわち、天草湾で見られた北上流に着目し、駒場海坂で定期的に就航しているフェリーに設置された ADCP (Acoustic Doppler Current Profiler) による測流データを用いて、カタクチワシの漁況変動と北上流の変動傾向との関連性について検討を行うこととした。

4.1 材料と方法

4.1.1 漁獲統計資料

まず、橘湾北部地区および西彼地区の春季機関体を標本としてとりあげ、橘湾北部地区については 1986〜2008 年まで、西彼地区については資料が入手可能な 1997〜2008 年までの春季から夏秋季の銘柄別漁獲量について春季発生群の分離を試みた。すなわち、既知である銘柄別「カエリ（体長 4〜6cm）、小羽（体長 6〜8cm）、中羽（体長 8〜10cm）、大羽（体長 10cm<）」を既知の春季発生群の成長（大下、2009；1丸，1993）を合わせて用いて、春季発生群を分離した。

なお、ここでの春季とは 3〜5 月を意味している。

4.1.2 卵・仔魚採集資料

長崎県総合水産試験場が五島ょで実施しているカタクチワシの卵・仔魚採集結果に着目し、観察点を変更した 2008 年を除く 1997〜2007 年の 3〜4 月のデータを解析に用いた。調査は濁水針（離合社製）を装着した改良型ナビゲッキ（内径 45cm、網地 NYTAL52GG、メッシュサイズ 0.335mm）を用いて鉛直曳網し、海底が 150m 以下の場所には、海底
直上から海表面まで曳網した。採集したプランクトン標本は、船上で 10%ホルマリン海水で固定した。得られた標本のうちカタクチイワシの卵・仔魚について計数を行った後、ネットの捕獲率と曳網距離およびワイヤー傾角から 100m³ 当たりの卵・仔魚数を算出し、全調査点の平均値を求めた。

4.1.3 鹿児島県西薩地域のカタクチイワシシラス漁獲量資料

3-5 月においてバッチ網で漁獲される鹿児島県西薩地域（Fig.4.1）のシラス漁獲量を用いて、橋本および西彼地区において春季から夏秋季に漁獲される春季発生群の小型個体（カエリ・小羽）漁獲量との関連性を検討した。また、鹿児島県におけるシラスの魚種組成は、1997年からカタクチイワシ主体に変化したことが報告されていること（加治屋、2006）、鹿児島県西薩地域のシラス漁獲量については 1997〜2008 年のデータを用いた。

4.1.4 春季における鰐島海峡のフェリーデータ（ADCP と水温）

鰐島海峡を横断する「フェリー縦」に鹿児島県水産試験場が設置した ADCP（Acoustic-Doppler Current Profiler）（古野電気製、CI-60G）を用いて 2003〜2008 年に測定された 10m 深の流況データを解析した。用いた流況データはフェリー航路のうち、北部にあたる串木野一里間（ルート I）（Fig.4.2）のものである。流れのデータ、時間、位置情報は全てアスキーデータとして記録されているため、これらをもとに古野電気（株）から入手したデータフォーマットに従い時間毎の 10m 深の北・南および東・西成分の流速を算出した。さらに、得られた流速は全てトランスデューサーとジャイロコンパスの不整合による誤差の補正（Joyce、1989）を行った。

また、橋湾への卵・仔稚魚の輸送には往復流である潮流よりも残差流の果たす役割が大きいと考えられることから、流況データから潮流の影響を除去することが不可欠である。「フェリー縦」はルート I を定時に 1 日 3 回通過するため、ADCP による潮流データは太陽時に同期した時間に粗い semi-regular 間隔のデータとみなすことができる（黒田ほか、2004）。すなわち、通常の調和解析を行うと 12 時間周期である S2 分潮が最も大きく評価される可能性が高い。そこで、黒田ほか（2004）の方法に従い、ルート I に Fig.4.2 に示すように定点（K1～K7）を設定し、各定点を中心として経度±1 分をその定点のデータとして取り扱うこととする。データ欠損が比較的少ない 2005 年 1 月〜2006 年 12 月のデータから K1、O1、P1、Q1、M2、N2 の 6 分潮の調和定数を算出した。

また、黒田ほか（2004）が K1、P1 分潮分離に用いた手法に従い、潮位の M2 分潮と S2 分潮の振幅比と位相差から M2 分潮の調和定数を推算した。すなわち、観測点の最寄りの観測所（串木野、阿久根）の M2、S2 分潮の潮位調和定数の平均値を用いて M2 分潮から S2 分潮の調和定数を算出した。これらの調和定数を用いて得られた各年 3-5 月の残差流を日単位で平均して解析に用いた。さらに、流況と同時にフェリーデータの水温計（古野電気製、TI-205E）のデータ（水深 5m）についても日単位で平均値を求め、解析に用いた。
4.2 結 果

4.2.1 カタクチイワシ春季発生群小型銘柄の漁況変動

春季発生群の成長に関する既往研究に基づけば、カタクチイワシ春季発生群の体長は、孵化後1ヶ月で30mm, 2ヶ月で50mm, 3ヶ月で65mm, 4ヶ月で80mmであった。これらと既知の銘柄別体長（カエリ：体長4〜6cm, 小羽：体長6〜8cm）から、春季発生群は発生後概ね1ヶ月〜3ヶ月でカエリ, 2ヶ月〜4ヶ月で小羽として漁獲されるものと推察される。このことから、カエリの4〜8月の漁獲群、小羽の5〜9月の漁獲群を春季発生群の漁獲量とした。

Fig. 4.3 に横浜北部地区および西彼地区におけるカエリ・小羽銘柄漁獲数の1日1隻当たり漁獲量指数の経年変化、これらに占める春季発生群の割合を示す。なお、漁獲量指数は、1日1隻当たり漁獲量が最も多かった2006年に対する各年の漁獲量を比率で示したものである。

まず、横浜地区では1日1隻当たりの漁獲数は、マイワシが卓越していた1986年から1995年にかけては0.13〜0.42であったが、マイワシに代わってカタクチイワシが増加した1996年から2008年までの漁獲数は0.42〜1.0に増加した。さらに、横浜のカエリ・小羽銘柄全漁獲数に占める春季発生群の割合は、1995年以前は12〜56%であったが、カタクチイワシ漁獲数が増加した1996年以降の春季発生群の割合は43〜89%であり、両者には有意な差が認められた（t検定: p<0.01）。一方、西彼地区におけるカエリ・小羽銘柄全漁獲数に占める春季発生群の割合は44〜91%であり、横浜北部地区と同様の傾向を示した。

4.2.2 五島灘におけるカタクチイワシ卵・仔魚密度の経年変動

1997年から2007年の五島灘におけるカタクチイワシ卵・仔魚の平均密度と横浜および西彼地区の春季発生群の1日1隻当たり漁獲量の経年変動をFig.4.4およびFig.4.5に示す。なお、卵・仔魚の採集時期が3月〜4月であるため、春季発生群漁獲量は4月以前発生群に基づくものとした。

五島灘における卵と仔魚の密度はほぼ同様の経年変動を示したが、これらと横浜および西彼地区における春季発生群の漁獲数変動の関連性を検討した結果、両者の間有意な相関は認められなかった（Fig.4.6）。すなわち、1997年は卵・仔魚が著しく低かったのに対して、横浜の春季発生群の漁獲量は高く、逆に卵・仔魚密度が最も高かった2005年には、春季発生群の漁獲量は低下した。

4.2.3 横浜および西彼地区における春季発生群漁獲量と鰤島周辺海域のシラス漁獲量との関係

鹿児島で3月〜5月に漁獲されるシラスの発生月は、4月以前と考えられる。一方、横浜と西彼地区で漁獲されるカタクチイワシ小型銘柄について推定する。すなわち、4月以前に発生したカエリ、小羽の漁獲期を先のカタクチイワシの成長から推定すると、各々5月〜7月、5月〜8月となった。そこで、Fig.4.7に鹿児島周辺海域の3月〜5月のシラス漁獲量と、その発生時期に適した横浜および西彼地区におけるカタクチイワシ春季発生群の1日1隻当たりの漁獲量との関係を示す。両者の間にはそれぞれの地区で有意な正の相関が認められた（横浜地区: r=0.64, N=12, p<0.05, 西彼地区: r=0.58, N=12, p<0.05）。

- 46 -
4.2.4 春季における飯島海峡の残差流と水温の変動
2003～2008年の各年3月～5月（実際には前後10日間を含む2月20日～6月10日）について残差流を求め、その日々変動をスティックダイアグラムでFig.4.8aに示した。また、各年の残差流推定期間における水温の変動状況をFig.4.9に示す。残差流の変動状況は、年度によって相違があるものの、どの年も流向が北～東、または北～西の残差流が卓越しており、両者を含む北向きの残差流の出現率は59～79%であった（2003年61%，2004年77%，2005年60%，2006年79%，2007年59%，2008年70%）（Table 4.1）。さらに、各定点における北向きの残差流のうち北～東向きの流れの比率は、39～75％であった（K1, 75%; K2, 70%; K3, 60%; K4, 75%; K5, 66%; K6, 58%; K7, 39%）。

以下、各年の残差流の状況および流速と同時に測定された水温の変動と残差流との対応関係について述べる。なお、Fig.4.8に付記した矢印は、北～東向きの残差流が顕著でありかつ1℃/日以上の水温上昇が認められた期間を示したものである。

2003年（Fig.4.8a）：4月21日にK2において45 cm・s⁻¹の南西流が見られ、さらに5月26日にはK3で64 cm・s⁻¹の南西流が見られるなど顕著な南下流が認められた。その後6月1日からは全体に北上流が卓越し、K1-K5で6月4日以降40 cm・s⁻¹以上の北～東向きの流れが認められた。5月26日に1.5℃/日以上の急激な水温上昇が見られ、水温は20℃台から23℃台となったが、その後水温は横ばい傾向で推移した。

2004年（Fig.4.8b）：3月29日にK1-K5で40 cm・s⁻¹以上の北～東向きの流れることが見られ、同様期の3月28～29日に1.9～2.1℃/日以上の急激な水温上昇が認められた（Fig.4.9参照）。

2005年（Fig.4.8c）：K2-K4において3月26日までは南下流が見られたが、北上流に変化し、4月上旬まで20 cm・s⁻¹以上の北～東向きの流れが続続した。北上流時の3月30日に1.5℃/日以上の急激な昇温が見られ、その後徐々に昇温し、4月5日以降19℃台になったが、4月10日に降温傾向に転じた（Fig.4.9）。

2006年（Fig.4.8d）：3月22日にK2-K5において、35 cm・s⁻¹以上の北～東向きの流れが見られ、その最大流速はK5で46 cm・s⁻¹であった。水温はK1-K7において3月22日は15℃台であったが、徐々に昇温し、3月27日には16℃台となり、K3では1.1℃/日以下の水温上昇が認められた。さらに、5月5日にはK3-K6で40 cm・s⁻¹以上の北～東向きの流れが見られ、その最大流速はK5で54 cm・s⁻¹であった。水温は5月5日に19℃台であったが、徐々に上昇し、5月12日にK1-K5で0.9～1.1℃/日以上の顕著な水温上昇が認められた。また、5月21日にK4で39 cm・s⁻¹の北～東向きの流れが見られ、同日にK4で1.2℃/日の顕著な水温の上昇が認められた（Fig.4.9）。

2007年（Fig.4.8e）：3月2日にK5で3月3日にK3-K4で35 cm・s⁻¹以上の顕著な北～東向きの流れが認められた。その後、3月9日に北上流が卓越し、その間の最大流速は3月17日にK2で66 cm・s⁻¹であった。水温については、3月10日にK4-K5で1.0℃/日以上の水温上昇が見られた後、3月17日までに全定点で1.0℃/日以上の顕著な水温上昇が認められた。

2008年（Fig.4.8f）：K2-K4において3
月15日から5月19日に北～東向きの流れが概ね継続し、この期間に約3回（3月19日、4月29日、5月15日）、1℃/日以上の水温上昇が観測された。

以上のように、北～東向きの残差流が卓越している時期にそれに対応した急激な水温上昇が認められる事例が多いことが分かる。

そこでさらに、残差流と水温変動の関連を詳しく調べるために、3月～5月のデータ欠損が比較的少ない2004年について、甑島海域横断面の水温分布と観測値の変動との関連を検討した（Fig.4.10）。これに述べたように2004年3月29日付近は等温線の間隔が狭くなってしまい、水温の顕著な上昇が認められる。また、3月上旬のK4-K7と5月下旬のK1-K7においても等温線の間隔が狭いことがわかる。同時間帯の流れ（Fig.4.8b）を見ると、いずれの時間帯にも34cm/s以上の北～東向きの流れが認められた。一方、顕著な水温上昇後の3月上旬から5月上旬では水温の顕著な変動が認められず、等温線の間隔が狭かった。さらに、5月中旬には20.5℃の水温がK7からK4に向かって伝播する様子が認められたが、このとき北～東向きの流れもK6からK2に向かって順に出現していたことがわかる（Fig.4.8b）。以上のような水温急上昇と北～東向きの残差流の対応関係は、年数にも同様に認められた。

第2章では、2007年3月13-14日に上甑島北部海域で観測された北上流が、上甑島東からの暖水の北上に対応していることを指摘している。そこで、この北上流と同時期（2007年3月13日）に甑島海域で得られた残差流の推定値との比較を試みた（Fig.4.11）。上甑島北部海域では、この時に10m深で最大56cm/s

の北向きの残差流が観測されている。一方、甑島海峡の各地点のうち、K1-K4の残差流の向きは北東方向であり、その10m深の流速最大値は43cm/sであった。また、この残差流の向きは熱赤外画像から判別した甑島海峡から上甑島北部に伸長していた暖水の向きと良く一致していた。

4.3考察

4.3.1 橋溂および西彼地区における春季発生群の漁況と加入源

1960～1970年代に橋溂および西彼地区で漁獲されていたカタクチイワシについて小川（1976）は、春季発生群の発生量、生残率および集団数によって漁況の好・不良が大きく左右されると推察している。本節で春季発生群について検討した結果、カタクチイワシの漁獲量が増加した1996年以降は、小型絨柄の年間漁獲量が多く、春季から夏にかけて漁獲される春季発生群が占めていることが分かった。

また、マイウンが橋溂における漁獲の主体であった1995年以前には、カタクチイワシ春季発生群の割合は少なかったことが明らかとなった。このことから、橋溂および西彼地区におけるカタクチイワシの漁況に、春季発生群の変動が大きく関与していることを示しており、1960～1970年代の小川（1976）の知見ともよく一致する。

一方、本節で橋溂の西に位置する五島瀬における卵・仔魚の分布密度と橋溂および西彼地区的春季発生群の漁獲量との関係について検討した結果、両者に明確な関連性は認められなかった。

さらに、1997年に橋溂で採集された小型魚の体長組成データ（長崎県総合水
産試験場の未発表データ）によれば、小型魚の多くは4月生まれと推定されているが、この年の3～4月には五島灘で卵・仔魚がほとんど採集されていない（Fig. 4.4およびFig.4.5）。第3章で述べたように春季発生群が、外海からの加入が主であることを考慮すると、春季におけるカタクチイワシの卵・仔魚は、五島灘以外の沖合域から橋崎および西彼地区へ供給されている可能性が高いものと考えられる。

その一方で、甑島東海域から南東海域を漁場とする鹿児島県西薩地域のシラス漁獲量（3月～5月）と橋崎および西彼地区のカタクチイワシ春季発生群の漁獲量の関係には、有意な正相関が認められた（Fig.4.7）。このことは、外海からの加入に依存していると考えられる春季発生群の加入起源として甑島周辺海域が重要であることを示している。

4.3.2 春季の甑島海峡における残差流の変動実態

本研究では、既に第2章において天草灘で冬春季に実施した流況と海況の観測結果から、甑島海峡を含む甑島周辺海域からの北上流の存在を見出し、橋崎および五島灘への卵・仔魚輸送との関連性を指摘した。しかしながら、これらは時間的に断片的なものであり、この北上流がカタクチイワシの卵・仔魚の輸送に与える影響を厳密に評価することは困難であった。そこで、本章では甑島海峡のみの結果ではあるが、定期航路フェリーに設置されたADCPによる長期間の連続的な流況観測データの分析を行い、上記の北上流がいずれの年にも3月～5月に比較的な頻繁に発生していることを明らかにした。このことは、天草灘で観測された北上流が橋崎および西彼地区への卵・仔稚魚輸送に与える影響が大きいことを示している。

また、残差流の変動と水温の関連について検討した結果、顕著な北～東向きの流れが認められた時には水温の急激な上昇が見られる事例が多く、2004年の解析例で具体的に示したように水温の急激な変動は、残差流の変動と密接に関連していることがわかった。さらには、甑島北部海域と甑島海峡において同時観測結果が得られた。2007年3月の事例において、両海域で観測された北上流がいずれも暖水の分布をとよく一致していたことから（Fig.4.11），上述の北上流が南方からの暖水塊の波及と密接に関連するものであることが示唆された。

なお、調和解析で得られた甑島海峡における潮汐残差流の妥当性については、検証に用いることのできるデータが限られているが、先述したように2007年3月に甑島北部海域（10m深）で得られた平均流と、本研究で甑島海峡において推定された残差流の流速最大値（前者は56 cm/s，後者は43 cm/s，いずれも北向きの流れ）に大きな違いは見られなかった。したがって、本研究で得られた甑島海峡における潮汐残差流の推定値は概ね妥当であると判断した。

4.3.4 橋崎および西彼地区のカタクチイワシ春季発生群魚獲量に対する残差流変動の影響

上述の甑島海峡の北～東方向の流れは、卵・仔稚魚の輸送を通じて、橋崎および西彼地区のカタクチイワシ魚獲量に影響を及ぼす可能性がある。そこで、甑島海峡（K1～K7）で得られた残差流のうち、北～東向きの流速を各年毎に3月～5月のすべての期間について積算し、これを輸送指数（transport index）として橋
湾および西彼地区のカタクチイワシ春季発生群漁獲量との関連性を調べた。ただし時化等によりデータの欠損がある場合には、欠損したデータの前後1日のデータを用いて補間した。

輸送指数と橘湾および西彼地区のカタクチイワシ春季発生群漁獲量との間にはFig.4.12に示すような有意な正の相関が認められた。このことは北東向きの残差流が、橘湾および西彼地区へのカタクチイワシ卵・仔魚の輸送に大きく関わっていることを裏付けており、この流れが橘湾における漁況の予測にとって極めて重要な要素となっていることを示している。

以上のことから、橘湾および西彼地区で春季〜夏秋季に漁獲されるカタクチイワシ春季発生群は、南方からの加入に主に依存しており、甑島海峡における北東方向の残差流の年々の変動は、橘湾および西彼地区における漁況の変動に大きな影響を与えていることが分かった。
第5章 結論

漁況予測は、漁業者の操業計画策定に利用されるほか、資源管理計画策定にも利用される水産学上欠かすことのできない課題の一つである（和田ほか、1995）。本研究では、五島瀬沿岸や天草瀬の北東に位置する橋浦で漁獲されるカタクチイワシ、とくにその春季発生群（小型鰭柄）を対象として、その卵・仔稚魚の輸送にかかわる天草瀬・五島瀬の冬春の流況に関する詳細な調査を行い、残差流の構造と変動の実態を明らかにするとともに、カタクチイワシの漁況変動との関連について検討を行った。

5.1 天草瀬・五島瀬における海況と流況

野見崎半島沿岸で2006年5月6日〜24日に実施した協議系による測流結果から、卵・仔稚魚輸送にかかわる流れについて検討するためには、潮流成分を除去することが必要不可欠であることが確認された。そこで、2004年〜2007年の1〜5月に天草瀬で6回、五島瀬と甑島北部海域で各1回、調査船に装備されたADCPSによる24時間50分の往復観測を行い、それぞれについて潮流の影響を除去した残差流を算出した。その結果、天草瀬の五島瀬の北東部にかけて全体に北上流が卓越していること、天草瀬の北ないし北東方向の残差流の流速は最大40cm・s⁻¹であり、この流れは天草瀬の北東に位置する橋浦への卵・仔稚魚輸送に重要な働きをしていることが分かった。また、甑島海峡北部海域でも北上流が卓越しており、その最大流速は55cm・s⁻¹であった。

さらに、残差流と水塊構造の関連について検討するために、天草瀬および甑島北部海域の北上流発生時の海況観測結果と赤外線画像の解析を行った。その結果、上述した北上流は甑島海峡もしくは甑島西方海域から連続した暖水の分布とよく対応しており、表層だけではなく中層および底層においても暖水に対応した構造を示すことが分かった。このことから、この北上流は天草瀬南部海域におかくは黒潮から分派された暖水の北上に対応するものと推察された。

5.2 定同位体比を用いたカタクチイワシの加入地の検討

橋浦、西彼地区および有明海で春季、秋冬季に漁獲されたカタクチイワシを標準（合計50個体）として、安定同位体比（δ¹³C、δ¹⁵N）分析を行い、橋浦および西彼地区で漁獲されるカタクチイワシの加入地域について検討した。その結果、過去に日本国内で実施したカタクチイワシの安定同位体比分析の結果（Tanaka et al., 2008）から推定すると、春季に漁獲されたカタクチイワシの炭素・窒素安定同位体比は外洋性を示し、また秋冬季に漁獲されたカタクチイワシは内洋性を示すことが分かった。

春季に漁獲されたカタクチイワシは、小型魚であり春季発生群と推定される。このことから、春季発生群は主に外海域で孵化し、その後漁蝦を行いながら、漁場に加入してきたと考えられる。また、
秋季および冬季に漁獲された小型のカタクチワシは、夏秋季に発生した群と考えられるが、これらの安定同位体比が内湧性を示したことから、これらは発生後に内湧に長く滞在していたものと推察される。このことは、これらが内湧もしくは内湧の近傍海域で発生したことを示唆している。すなわち、春夏発生群は主に橋湾および西彼地区以外の外海で発生した後、漁場に加入し、夏秋季発生群は橋湾および西彼地区の近傍海域で発生していると推察された。

なお、秋冬季に漁獲されたカタクチワシの安定同位体比は、有明海で報告されたベントスの安定同位体比（Yokoyama et al., 2005; Suzuki et al., 2008; Yokoyama et al., 2009）よりも高く、また本研究で分析に用いた有明海で漁獲されたカタクチワシの安定同位体比とほぼ同様の値であった。このことは、秋冬季に漁獲されたカタクチワシが有明海から回遊してきたものである可能性を示しており、下村ほか（1970）が提示した仮説を支持している。

5.3 橋湾および西彼地区におけるカタクチワシの漁況変動要因

橋湾および西彼地区における各々1986～2008年、1997～2008年のカタクチワシ漁獲データと成長率を用いて春発生群の漁獲量の変動を試みた。その結果、橋湾ではマグロの減少によりカタクチワシが増加し始めた1996年以降は小型魚の漁獲量に占める春発生群の比率が39～82%に増加していること、また西彼地方についても1997年以降の小型魚の漁獲量に占める春発生群の比率が平均73%と高かったことが明らかとなった。このことは両地区的近年のカタクチワシ漁況に春発生群の変動が大きく関与していることを示している。

さらに、橋湾および西彼地区における春発生群の漁況と有明海南部に位置する鹿児島県西薩摩地域のカタクチワシ漁場（1997～2008年）との関連性について検討した結果、両者の間には有意な正の相関が認められた（橋湾：r=0.64、西彼地区：r=0.67）。このことは両地区的カタクチワシ漁況が南方の外海から内の加入に大きく依存していることを示している。

そこで、春発生群の卵・稚仔輸送に関与している北上流の変動観察を詳細に把握するため、甑島海峡を横断する「フェリータフ」に装備したADCPで2003～2008年に継続的に測定された流れのデータをもとに、各年3月～5月の潮汐残差流を算出した。その結果、甑島海峡における北上流の発生頻度は59-79%と高く、天草灘において北上流が頻繁に発生していることが明らかとなった。また、甑島北部海域において2007年3月13～14日に実施した測流調査で得られた北向きの残差流（10m深で最大56cm/s）は、この時に甑島海峡で得られた北向きの残差流の日平均値（最大35～43cm/s）とほぼ一致しており、いずれも甑島南部の海岸群島から連続して認められた暖水塊の分布によく対応していた。

さらに、甑島海峡における北〜東方向
の流速の累積値（輸送係数）と橋湾と西彼地区のカタクリイワシ冬季発生群の漁獲量との関係について検討した結果、両者の間に有意な正の相関（橋湾：r=0.86、西彼：r=0.85）が得られた。このことは、幡島海峡における北～東方向の流れがカタクリイワシ卵・仔稚の輸送を通じて、橋湾と西彼地区の漁場への加入に入大きく寄与していることを示唆している。

5.4 漁況予測手法の確立に向けて

九州西岸のカタクリイワシの短期的な漁況予測については、五島灘で小川（1976）の、また鹿児島西薩地域で加治屋（2006）の報告があるにすぎない。小川（1976）は五島灘のカタクリイワシの漁況予測について、春期漁期（5月〜6月）と秋期漁期（11月〜12月）のシラス・カエリの漁獲量からその年の春漁と秋漁それぞれの全漁場漁獲量の予測できることを示している。しかしながら、この手法は漁期中であり、本来求められている漁期前の予測はできない。また、加治屋（2006）は、鹿児島西薩海域における冬季のシラス漁獲量、3月における鹿児島県西薩海域一帯のカタクリイワシ卵採取量や表層水温との関連性について注目し、それに基づいて春季のシラス漁獲量が早期の加入量と気温との関連性により決定されるとしている。現在、鹿児島県では、この考え方に基づいてシラスの漁況予測を行っている。

一方、橋湾および西彼地区で春季〜夏秋季に漁獲されるカタクリイワシについては、漁況予測として確立された方法はない。本研究で得られた知見に基づけば、橋湾および西彼地区で春季〜夏秋季に漁獲される小型（カエリ、小羽）のカタクリイワシ春季発生群の漁獲量は、幡島海域周辺海域で漁獲される冬季のシラス漁獲量および幡島海域の北上流の変動と密接に関連している。春季〜夏秋季のうち、とくに5月〜9月における春季発生群の漁獲量は主に3月〜4月生まれと推定されるので、上記の知見に基づいて北上流の規制から漁獲量を予測することが可能である。すなわち、3月〜4月の漁獲指数と5月〜9月までの橋湾および西彼地区の春期発生群漁獲量との関連性を検討した。その結果、いずれについて有意な正の相関が認められた（橋湾：r=0.88、p<0.05；西彼地区：r=0.85、p<0.05）。

また、幡島海域周辺のシラス漁獲量は3月の産卵量と相関するとの報告（加治屋，2006）があり、早期に大きな予測を行う上で有用な情報と考えられる。そこで、橋湾および西彼地区における春季〜夏秋季のカタクリイワシ漁獲量と鹿児島県西岸における3月の産卵量との関連を調べた。その結果、両地区ともに漁獲量は産卵量と正の相関を示し、西彼地区については有意な高い相関が認められた（r=0.84、p<0.01）。このことから3月の鹿児島県西薩海域における卵量や、鹿児島県が予測した幡島海域周辺における春季のシラス漁獲量を組み合わせることによって、漁況予測の精度をさらに向上させることが可能となるものと考えられる。
以上のようになり、本研究では橋湾および西彼地方のカタクチイワシを対象に、その漁況変動要因を、流れによる卵・仔稚魚輸送の影響に主眼を置いて検討した。その結果、漁況観測の基礎となる加入源や輸送量の変動に関する新たな知見を得ることができた。しかしながら、本研究では、発育初期の加入量変動に関与すると考えられる初期消滅の可能性（Hjort, 1914）や初期観測の可否（Cushing, 1975, 1990）等に関する生物学的な調査や解析は行っていない。今後とも、精度の高い漁況観測や資源評価を実施できるようにしていくためには、黒潮流域を含めた簸砂周辺海域の流況変動やシラスの漁況変動に関する物理的、生物学的要因について総合的な調査・解析を進めるとともに、漁況変動のメカニズムを明らかにしていくことが不可欠である。

謝辞
本研究の遂行および本論文のとりまとめにあたり、終始渡って懇切なる御指導と御校閲を賜った長崎大学教授 中田英昭博士に深く感謝の意を表します。

本論文のとりまとめにあたり、御助言、御校閲の労を賜った長崎大学教授 合田政次博士、長崎大学教授 多田彰秀博士および長崎大学准教授 山口敦子博士に厚く御礼申し上げます。

ACDPを用いた調査方法については、独立行政法人関戸水産研究所 中川信之氏、独立行政法人水産総合研究センター 森永健司博士、独立行政法人西海区水産研究所 種子田雄氏に熱心にご指導を頂いた。ここに深く御礼申し上げます。平成21年6月にご永眠された渡辺秀俊氏には、潮汐調和解析について有益な指針を頂きました。心から御礼申し上げるとともに、御冥福をお祈り致します。独立行政法人西海区水産研究所 秋山秀樹氏には本稿をまとめるに際して大変有効なご助言を頂いた。ここに深く感謝の意を表します。また、1 昼夜を越える調査船による観測は長崎県総合水産試験場調査船鶴丸元船長 川原好博氏、長崎大学練習船鶴浜丸船長 松原誠生氏をはじめ、両船の乗組員の方々からご協力を頂くことにより可能となりました。ここに厚く御礼申し上げます。学位を取得するにあたっては長崎県総合水産試験場、科学技術振興局、水産部の関係者各位に御理解と御支援を頂きました。ここに深く感謝の意を申し上げます。
ここに記して表します。

引用文献

赤松英雄(1950)五島珊瑚礁における潮流・流動について。海洋と気候、4、65-72。

長谷川宣信(1976)五島灘南部海域における海流型調査による表層の流動について。長崎県水産試験場研究報告、1、103-110.

井上高文(1981) 五島灘及び対馬暖流域における海洋特性。五島の生物29-72。

一丸俊雄・深谷浩・大下誠二(1988)五島沿岸域におけるカタクチイワシの日時別採集。平成5年日本水産学会秋季大会講演要旨集、108。

加治屋大(2006) 鹿児島県におけるシラス漁況予測に向けた取り組み。黒潮の資源海洋研究、7、13-16。

加藤修(1988) 超音波式魚群計による漁獲量の測定。西水研研報、66、59-67。

近藤正人(1995) 東シナ海・南方暖流の循環に関する研究。I, 50m 深及び表層における平均水温・塩分の分析。西水研報、62、19-66。

小西芳信・佐々田由紀(2002) 東シナ海の昼間表層におけるカタクチイワシシラスの多量採集。2002年水産海洋学会創立40周年記念大会講
演要旨集．110．
小野悦二・小西芳信・松岡正信（1994）1993年3月の九州西海域における飼料プランクトンの分布特性と環境要因．平成5年度日本水産学会九州支部大会講演要旨集．pp.4,1994
黒田寛・磯田豊・大西光代・岩橋雅行・佐藤千鶴・中山智治・伊藤克浩・伊勢田貞一・西澤慶介・岩田樹・外川範彦(2004)定期船ADCPによるsemi-regular samplingデータを用いた調和解析手法の検討一津軽海峡東口における潮流と残差流れの評価一．海の研究,13,553-564
桑原昭彦・鈴木重喜（1984）若宮伊西海域におけるカタクリオマツ卵・稚魚の年齢分布の昼夜変動．日水誌,60,1285-1292．
桑野雪延・長谷川義信（1972）五島瀬におけるカタクリイワシの卵・稚魚輸送様式の推定第17回西水研ブロックシンポジウム報告書桑間浩也（1975）長崎県沿岸におけるカタクリイワシの産卵．成長と漁況変動．長崎県水産試験場研究報告,1,1-8
宮地邦男（1991）九州西海域における黒潮小蛇行に伴う渦流の変動及びその魚卵稚魚輸送への影響．西海水研報,69,1-78．
森永健司（2000）九州西岸沿岸域での海況変動について一定間隔での水温連続観測記録から一．西海ブロック観測海況調査研究報告,8,25-46．
永井正男（1954）五島瀬における水温、塩分量の年変化について．海洋と気象,6,2-47．
永谷浩・大下誠二・一丸俊雄（1995）漂流ヘガキ調査から推定したマイワシ卵仔魚の輸送に関する研究．西水研研報,4,27-33．
中村保昭（1990）第33章五島列島周辺海域II物理、統・日本全国沿岸海洋誌（総説編・増補編）,685-709．東京大学出版会．
小田巻実（1982）五島瀬における潮流と沿流水系に関して．沿岸海洋研究ノート,19,112-120．
小川信次（1976）五島瀬・当瀬におけるカタクリイワシのメス漁獲物について．西海域水産研究所研究報告,48,1-22．
大下誠二（2009）九州北西岸におけるカタクリイワシの生物特性に関する研究．日本海ブロック資源研究会報告,44,51-60．
下村敏正・山下秀夫・小野悦二（1970）鰤湾で漁獲されるカタクリイワシについて．鰤湾をモデルとした海況および魚群分布調査．水産庁西海域水産研究所,1-21．
玉井一寿・井上尚文・近藤正人（1970）橋湾の流況．橋湾をモデルとした海況および魚群分布調査．水産庁西海域水産研究所,69-91．
Tanaka,H,Takasuka,A,Ohshima,S,Aoki,I,(2008)Geographical variations the trophic ecology of Japanese anchovy, Engraulis...
japonicus, inferred

和田時夫・浅野謙治・岡田行親(1995) カタクチイワシ漁獲量と資源量の短期予
報. 水産海洋, 54, 4, 384-388.
山本憲一・中田美・水田信二(1999) 水温・塩分
の鉛直分布からみた五島灘の漁況の特徴. 長
崎水試研報, 25, 1-8.
Isotopic evidence for phytoplankton as
a major food source for macro-benthos
on an intertidal sandflat in Amakusa sou
sources of benthic animals on intertidal
and subtidal bottoms in inner Amakusa
Sound, souther Japan, determined by s
table isotopes. Est. Coast. Shelf Sci. 82, 24
3-253.

要 約
漁況予測は、漁業者の操業計画策定に
利用されるほか、資源管理計画策定にも
必要な水産上欠かすことのできない課題
の一つである。五島灘沿岸や天草灘の北
東に位置する橘湾で獲獲されるカタクチ
イワシ(Engraulis japonicus)は重要な対象
魚種となっており、その卵・仔稚の輸送
にかかわる天草灘・五島灘の流況と漁況
との関連等について検討が進められてきた。
しかしながら、当該海域の流れの観
測データはきわめて少なく、カタクチイ
ワシの主な産卵時期にあたる冬季〜春季の流
れに関する知見は限られたものしかないと
そこで本研究では、天草灘・五島灘の流
況について船舶を用いた調査を行い、卵・
仔稚輸送に貢献する残差流の構造と変
動の実態を明らかにするとともに、カタ
クチイワシの漁況変動との関連について
検討を加え、その漁況予測精度の向上に
資する基礎的な知見を得ることを目的と
した。

天草灘・五島灘における漁況と流況
野島崎半島南部で 2006 年 5 月 6 日〜
24 日に実施した係留系による流れ観測結果か
ら、卵・仔稚輸送にかかわる流れの変動
実態について検討するためには、潮流成
分を除去することが必要不可欠であるこ
とが確認された。そこで、2004 年〜2007
年の 1 〜 5 月に天草灘で 6 回、五島灘と
顕島北部海域で各 1 回、調査船に装備さ
れた ADCP による 24 時間 50 分の往復
観測を行い、それぞれについて潮流の影
響を除去した残差流を算出した。その結
果、天草灘から五島灘東部にかけて全体
に北上流が卓越していること、天草灘の
北ないし北東方向の残差流の流速は最大
40cm・s⁻¹ であり、この流れは天草灘の北
東に位置する橘湾への卵・仔稚輸送に
重要な働きをしていることが分かった。ま
た、顕島海峡北部海域でも北上流が卓越
しており、その最大流速は 55cm・s⁻¹ で
あった。
さらに、残差流と水塊構造の関連につ
いて検討するために、天草灘および顕島
北部海域の北上流発生時の STD による海
況観測結果と赤外画像の解析を行った。
その結果、上記の北上流は甑島海峡もしくは甑島西方海域から連続した暖水の分布とよく対応しており、表面で中層や中層においても暖水に対応した構造を示すことが分かった。このことから、この北上流は天草灘南方海域おぞらくは黒潮から分派した暖水の北上に対応するものと推察された（第2章）。

安定同位体比を用いた橋湊および西彼地区におけるカタクチイワシの加入起源の検討

橋湊と西彼地区で春、秋、冬季に漁獲されたカタクチイワシ（合計50個体）の安定同位体比（δ13C、δ15N）の分析を行い、カタクチイワシの加入起源について検討した。その結果、秋季漁獲の炭素・窒素安定同位体比は、これまでに沿岸域で報告されている値に比べて高く内湾性を示した。

一方、春季漁獲の炭素・窒素安定同位体比は報告されている値に比べて低く、特に窒素安定同位体比は外洋性のカタクチイワシの値とよく一致していた。このことは両地区で春季に漁獲されるカタクチイワシは外洋域に起源を持つことを示している（第3章）。

橋湊および西彼地区におけるカタクチイワシの漁況変動

橋湊および西彼地区における各々1986～2008年、1997～2008年のカタクチイワシ漁獲データから既往の成長に関する知見を用いて春季発生群の漁獲量の分離を試みた。橋湊では、マイワシが減少しカタクチイワシが増加し始めた1996年以降は小型魚の漁獲量に占める春季発生群の比率が48～89%に増加しており、西彼地区においても1997年以降の春季発生群の比率は44～91%であった。これらは両地区の近年のカタクチイワシ漁況と春季発生群の変動が大きく関与していることを示している。

また、橋湊および西彼地区における春季発生群の漁況と五島灘における卵・仔魚分布密度の変化において関連性がほとんど認められなかった。そこで、両地区の漁況と天草灘南方に位置する鹿児島県西薩摩海域のカタクチイワシ漁況（1997～2008年）との関連性について検討した。その結果、両者は有意な正の相関を示すことが分かった（橋湊：R=0.64、西彼地区：R=0.58）。このことは、両地区のカタクチイワシ漁況が南方海域からの加入に大きく依存していることを示唆している。

一方、天草灘南方からの卵・仔魚輸送に関与している春季の北上流の変動実態を詳細に把握するため、甑島海峡を横断する「フェリー観」に装備したADCPで2003～2008年に継続的に測定された流れのデータをもとに、各年3～5月の潮汐残差流を算出した。その結果、甑島海峡における北上流の発生頻度は59～79%と高く、天草灘において北上流が頻繁に発生していることが明らかとなった。また、甑島北部海域において2007年3月13～14日に実施した渦流調査で得られた北向きの残差流（10m深で最大56cm/s）は、この時に甑島海峡で得られた北向き
の残差流の日平均値（最大35–43cm/s-1）とほぼ一致しており、いずれも観測南方の宇治簾島から連続して認められた暖水の分布ともよく対応していた。そこでさらに、観測結果における北〜東方向の流速の累積値と橘溝と西彼地区のカタクチイワシ春季発生群の漁獲量との関係について検討した結果、両者の間に有意な正の相関（橘溝：R=0.86；西彼：R=0.82）が得られた。このことは、観測結果における北〜東方向の流れが橘溝と西彼地区へのカタクチイワシ卵・仔稚輸送に大きく寄与していることを示している（第4章）。

以上、本研究では綿続的な船調査の結果や人工衛星画像等を総合的に解析することによって、これまで知見がきわめて少なかった冬季〜春季の天草灘・五島灘における残差流の構造と変動実態を明らかにし、天草灘で観測された北〜東向きの残差流の変動が、卵・仔稚輸送を通して橘溝および西彼地区におけるカタクチイワシ春季発生群の漁況に大きな影響を及ぼしていることを指摘した。このことはカタクチイワシの漁況予測の精度向上を図る上でのわめて有用と考えられる（第5章）。
Figure 2.1. Location of transects (Lines A1, A2, and B) for ADCP measurement and STD/CTD observation (b). The solid square (MO) indicates the mooring station for tidal current observation.
Figure 2.2. A drawing of mooring way
Figure 2.3. Tidal current ellipses for M_2 (a), S_2 (b), K_1 (c), and O_1 (d) tides, based on tidal current measurement conducted at 60 m depth of St. MO (see Fig.1b) from 9-24 May 2006. Bold solid lines in (a)-(d) indicate the tidal residual current.
Figure 2.4. Spatial and temporal changes in the tidal residual current (daily mean current) at the depth of 30 m along the Line A (see Fig.1) in the shelf region of the Amakusa-nada.
Figure 2.5. A composite image of NOAA/AVHRR on 11 January 2006 with daily mean currents at 10 m depth along Line A 2 (a), and vertical section of temperature and daily mean currents along Line A 2 on 10-11 January 2006 (b). The solid squares I and II indicate the areas of high temperature.
Figure 2.6. A composite image of NOAA/AVHRR on 25 January 2006 with daily mean currents at 10 m depth along Line A 2(a), and vertical section of temperature and daily mean currents (b) on 24-25 January 2006 along Line A2. The solid square III indicates the area of high temperature.
Figure 2.7 A composite image of NOAA/AVHRR on 11 January 2007 with daily mean currents at 10 m depth along Line A2 (a), and vertical section of temperature and daily mean currents along Line A2 on 10-11 January 2007 (b).
Figure 2.8 A composite image of NOAA/AVHRR on 14 April 2004 with daily mean currents at 10 m depth along Line A2 (a), and vertical section of temperature and daily mean currents along Line A2 on 13-14 April 2004 (b). The solid square IV indicates the area of high temperature.
Figure 2.9. A composite image of NOAA/AVHRR on 11 May 2005 with daily mean currents at 10 m depth along Line A1 and A2 (a), and vertical section of temperature and daily mean currents (b) on 10-11 May 2005 along Line A2. The solid square V indicates the area of high temperature.
Figure 2.10. A composite image of NOAA/AVHRR on 13 March 2007 with daily mean currents at 10 m depth along two transects in the northern Koshiki-shima Is. (a), and vertical section of temperature and daily mean currents along the transect (Stn. K1-Stn. K9) on 13-14 March 2007 (b).
Figure 2.11. (a) A temperature-salinity diagram for water masses observed along Line A on 10-11 January 2006 (the water mass B, shown by black dots) and on 24-25 January 2006 (shown by blue dots: Stns.1-3, green dots: Stns.5-7 and red dots: Stns.9-13). The water masses A and C correspond to higher temperature/higher salinity water and lower temperature/lower salinity water than the water mass B, respectively. Vertical sections of salinity on 24-25 January 2006 (b) and on 10-11 May 2005 (c) are shown in the lower panels.
Table 3.1. *Engraulis japonicus*. Samples collected in and around the Tachibana Bay. Sampling

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date of capture</th>
<th>Number of fish</th>
<th>BL range (mm)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12-Dec-07</td>
<td>5</td>
<td>82.7-84.9</td>
<td>Ariake Bay</td>
</tr>
<tr>
<td>B</td>
<td>12-Dec-07</td>
<td>5</td>
<td>77.5-81.1</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>C</td>
<td>6-Dec-07</td>
<td>5</td>
<td>48.9-59.8</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>D</td>
<td>26-May-08</td>
<td>5</td>
<td>47.6-55.1</td>
<td>Seihi Area</td>
</tr>
<tr>
<td>E</td>
<td>13-Jun-08</td>
<td>6</td>
<td>33.2-56.2</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>F</td>
<td>27-Jun-08</td>
<td>5</td>
<td>45.3-57.7</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>G</td>
<td>5-Dec-08</td>
<td>5</td>
<td>29.6-34.9</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>H</td>
<td>6-Jan-09</td>
<td>5</td>
<td>42.9-56.6</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>I</td>
<td>8-Jan-09</td>
<td>6</td>
<td>46.8-72.1</td>
<td>Tachibana Bay</td>
</tr>
<tr>
<td>J</td>
<td>13-Jan-09</td>
<td>3</td>
<td>38.1-43.1</td>
<td>Tachibana Bay</td>
</tr>
</tbody>
</table>
Figure 3.1. *Engraulis japonicus*. Sampling sites (symbols) and migration route of anchovy for spring (solid lines) and autumn (broken lines) in and around Tachibana Bay as suggested by Anonymous (1970).
Figure 3.2. *Engraulis japonicus*. Stable isotope ratios (δ^{13}C and δ^{15}N) of anchovy. Data of Tanaka et al. (2008) are also shown as square symbols.
Figure 3.3. *Engraulis japonicus*. Relationship between body length and stable isotope ratios of anchovy.
Figure 4.1. The target areas of this study. TB: Tachibana Bay, AN: Amakusa-Nada, KS: Koshiki Strait, SK: Seisatu-area, GN: Gotonada.
Figure 4.2. The stations used for the analysis of ADCP data obtained from monitoring by a ferry boat crossing the Koshikijima Strait.
Figure 4.3. Time-series of catch index (see the text for details) of small-sized anchovy in Tachibana Bay and percentage of the spring-spawned anchovy in 1986-2008. Solid squares: catch index of small-sized anchovy. Open circles: percentage of spring-spawned anchovy.

Figure 4.4. Time-series of the egg and larval density of anchovy in the Goto-nada in March-April, 1997-2007. The time-series of the catch of small-sized anchovy in Tachibana Bay is also indicated for comparison.
Figure 4.5. Time-series of the egg and larval density of anchovy in the Goto-nada in March-April, 1997-2007. The time-series of the catch of small-sized anchovy in Seihi area is also indicated for comparison.
Figure 4.6. Correlations between the egg density (or larval density) of anchovy in Mar.-Apl. in the Goto-nada and catch of spring-spawned anchovy in Tachibana Bay (or Seihi area). a) Correlation between egg density and catch in Tachibana-Bay. b) Correlation between larval density and catch in Tachibana-Bay. c) Correlation between egg density and catch in Seihi area, and d) Correlation between larval density and catch in Seihi area.
Figure 4.7. Correlation between the catch of spring-spawned anchovy in Tachibana Bay (or Seihi area) and the shirasu catch (March-May) in the Seisatsu region to the south of Tachibana Bay.
Figure 4.8. Daily variations of the tidal residual current estimated from the ADCP data obtained from a ferry boat crossing the Koshikijima Strait from 20 Feb. to 10 June (see Fig. 4.1 for the stations K1-K7). (a) 2003, (b) 2004, (c) 2005, (d) 2006, (e) 2007 and (f) 2008. The arrows on the both sides of each panel indicate the period of prominent north-eastward currents, when water temperature recorded by the ferry boat showed a rapid rise with more than 1 degree per day.
Figure 4.8. Daily variations of the tidal residual current estimated from the ADCP data obtained from a ferry boat crossing the Koshikijima Strait from 20 Feb. to 10 June (see Fig. 4.1 for the stations K1-K7). (a) 2003, (b) 2004, (c) 2005, (d) 2006, (e) 2007 and (f) 2008. The arrows on the both sides of each panel indicate the period of prominent north-eastward currents, when water temperature recorded by the ferry boat showed a rapid rise with more than 1 degree per day.
Figure 4.8. continue Daily variations of the tidal residual current estimated from the ADCP data obtained from a ferry boat crossing the Koshikijima Strait from 20 Feb. to 10 June (see Fig. 2 for the stations K1-K7). (a) 2003, (b) 2004, (c) 2005, (d) 2006, (e) 2007 and (f) 2008. The arrows on the both sides of each panel indicate the period of prominent north-eastward currents, when water temperature recorded by the ferry boat showed a rapid rise with more than 1 degree per day.
Figure 4.9. Daily variations of spatially averaged sea water temperature (at 5 m depth) measured by a ferry boat crossing the Koshikijima Strait from 20 Feb. to 10 June, 2003-2008.
Table 4.1. Frequency (%) of the north-eastward and north-westward residual currents in the Koshikijima Strait in Mar.-May, 2003-2008.

<table>
<thead>
<tr>
<th>Year</th>
<th>N-W</th>
<th>N-E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>30%</td>
<td>31%</td>
<td>61%</td>
</tr>
<tr>
<td>2004</td>
<td>30</td>
<td>47</td>
<td>77</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
<td>59</td>
<td>79</td>
</tr>
<tr>
<td>2007</td>
<td>22</td>
<td>37</td>
<td>59</td>
</tr>
<tr>
<td>2008</td>
<td>21</td>
<td>49</td>
<td>70</td>
</tr>
</tbody>
</table>
Fig.4.10. Daily variations of the sea water temperature (at 5 m depth) along the cross-section of the Koshikijima Strait (K1-K7) in Mar.-May 2004.
Figure 4.11. Spatial distributions of the tidal residual current around the Koshikijima Islands in 13-14 Mar. 2007, superimposed on the distribution of sea surface temperature detected by a satellite on 13 Mar. 2007.
Figure 4.12. Correlation between the catch of spring-spawned anchovy and the transport index that is defined by accumulated north-eastward velocity at the Koshikijima Strait.