研究事業評価調書(平成 26 年度) 平成 26 年 12 月 18 日作成 (様式 1)

事業区分	経常研究(実用化)		研究期間	平成24年度~平成2	評価区分	途中評価 (継続)	
研究テーマ名 秋輪ギク安定高語			品質生産に「	句けた新品種育成			
(副題) (強無側枝性でボリュー			ボリュームの	ある品種の育成)			
主管の機関・科(研究室)名 研究代表者名			代表者名	農林技術開発センター	花き・生物	工学研究室	久村麻子

<県長期横想等での位置づけ>

長崎県総合計画	政策4.力強<豊かな農林水産業を育てる (2)業として成り立つ農林業の所得の確保
科学技術振興ビジョン	第3章 長崎県の科学技術振興の基本的な考え方と推進方策 2-1.産業の基盤を支える施策 (1)力強〈豊かな農林水産業を育てるための農林水産物の安定生 産と付加価値向上
ながさき農林業・農山村活性化計画	- 2 業として成り立つ所得の確保 生産量の増大・安定による農林業者の所得向上 生産コストの低減による農林業者の所得向上

1 研究の概要(100 文字)

突然変異育種法を用いて、半無側枝性系統「長崎8号」から強無側枝性系統を育成し、その系統内から花が大 きく、切り花重量が重い系統を育成する。

強無側枝性系統の選抜

強無側枝性で、ボリュームのある(花径が大きく、切り花重量が重い)系統の選抜 研究項目

強無側枝性系統の効率的な増殖方法の検討

2 研究の必要性

1) 社会的・経済的背景及びニーズ

- ・キクは1戸当たりの栽培面積が拡大し、企業的経営体が増えている。そこで、低温期でも摘芽、摘蕾作業が省 力できる強無側枝性系統の育成が望まれている。
- ・平成22年度産は、低温開花性系統「長崎2号」の作付が減少した。これは、燃油価格の低下やヒートポンプの 導入により、暖房コストはかかるものの、切り花重量が重い「神馬1号」の作付が増加したためである。しかし、 シーズン後半から燃油価格の高騰と切り花単価の低下が見られ、生産原価を確保出来なかった。
- ・生産者は低温開花性系統導入の意向はあるものの、切り花重量が軽く、花が小さいなどの課題があり、市場 評価を考えて敬遠しているため、低温開花性系統でボリュームのある系統の育成が望まれている。
- 2) 国、他県、市町、民間での実施の状況または実施の可能性
- ・秋輪ギクの新品種育成は、他県の研究機関、民間種苗会社も行っているが、低温開花性で、強無側枝性を示 し、ボリュームがあり、収穫後の日持ちに優れ、種苗が安定して確保出来るものはない。

3 効率性(研究項目と内容・方法)

研究 項目	研究内容·方法	活動指標		H 24	H 25	H 26	H 27	H 28	単位
	突然変異誘発による 強無側枝性系統の	变異誘発	目標	2	2				- (手法)
	育成	手法数	実績	2	2				
	突然変異誘発による ボリュームのある系	変異誘発	目標			2	2		- (手法)
	統の選抜	手法数	実績						
	現地実証試験	委託試験	目標					4	(箇所)
		設置個所	実績						(四///)
	最適増殖方法の検 討	増殖法処理区数	目標				5	5	- (区)
			実績						

1) 参加研究機関等の役割分担

農林技術開発センター イオンビーム照射、花弁培養、有望系統選抜、特性調査、増殖方法の検討 農産園芸課技術普及班 現地実証試験、有望系統選抜

振興局 現地実証試験

花き振興協議会キク部会 有望系統選抜、現地実証試験圃の設置(県内4か所)

理化学研究所 イオンビーム照射

2) 予算

研究予算 (千円)	計 (千円)	人件費 (千円)	研究費	財源					
	(113)	(1 1 3)	(千円)-	国庫	県債	その他	一財		
全体予算	40,230	33,440	6,790			1,500	5,290		
24 年度	9,492	8,134	1,358			300	1,058		
25 年度	9,492	8,134	1,358			300	1,058		
26 年度	9,492	8,134	1,358			300	1,058		
27 年度	5,877	4,519	1,358			300	1,058		
28 年度	5,877	4,519	1,358			300	1,058		

(研究開発の途中で見直した事項)

4 有効性

研究 項目	成果指標	目標	実績	H 24	H 25	H 26	H 27	H 28	得られる成果の補足説明等
	強無側枝系統育成	1系統				1			「神馬1号」と比較して、摘芽摘蕾数が全作型 50%以下となる系統を育成する。
	強無側枝性でボリューム のある品種候補育成	1系統						1	強無側枝性で、花径、切り花重量が 「神馬1号」と同等の低温開花性系統 を育成する。
	強無側枝性系統の効率 的増殖技術確立	1技術						1	1株当たり8本を確保できる増殖技術 を確立する。

1) 従来技術・先行技術と比較した新規性、優位性

今回の育種素材である「長崎8号」は、「長崎2号」イオンビーム照射個体から選抜した系統で、低温開花性と 半無側枝性を有する。「長崎8号」を用いることで、強無側枝性系統の育成期間が短縮される。

花弁培養は、これまでに「晃花の富士」および「長崎2号」から強無側枝性系統が選抜できており、無側枝性の強化には有効である。しかし、花弁培養で得られた個体は、花弁数の減少や花径が小さくなる傾向が強いため、ボリュームのある系統変異誘発には、実績のあるイオンビーム照射や増殖による枝変わりを利用する。

イオンビーム照射では、節間が短く、切り花重量が重い優良系統「長崎5号」が得られている。

2)成果の普及

これまでの研究成果

半無側枝性系統「長崎8号」にイオンビーム照射および花弁培養を行い得られた変異系統について、本圃で選抜を行った結果、25年度までで1次選抜19系統、2次選抜9系統を選抜した。また、イオンビーム照射して得られた変異個体から、腋芽が消失する傾向にある無側枝候補系統(0次選抜)を42系統選抜している。2次選抜系統のうち、有望系統「1102-46-1」は、年末出荷作型において50%摘芽・摘蕾数が削減でき、また穂が十分に確保できる系統である。

研究成果の社会・経済への還元シナリオ

選抜を生産者とともに行い、最終年度に県内4か所で実証試験を行うことで、迅速な普及が期待出来る。 選抜された優良系統は、品種登録を行い、技術普及班、振興局を通じて、早急に現地へ普及する。同時に 栽培マニュアルを配布し、1年目から安定高品質生産を可能にする。

研究成果による社会・経済への波及効果の見込み

・経済効果:輪ギク(168ha)のうち、秋輪ギクの作付面積を 60%の 101ha として試算。「神馬1号」と比較。 生産額:18.6 億円 / 年 算出根拠 70,300 千本(平成 24 年度統計) × 60%(秋輪ギク占有率) × 44 円 収益増:3.5 億円 / 年

0.55 億円 / 年 算出根拠 摘芽・摘蕾作業 50%削減: 7.8 万円(240 時間×50%×650 円) / 10a 2.99 億円 / 年 算出根拠 暖房コスト 30%削減: 29.7 万円(11 キロリットル×30%×A 重油 1 片 20 円) / 10a

(研究開発の途中で見直した事項)

研究評価の概要

種 類	自己評価	研究評価委員会
由	(23年度) 評価結果	(23年度) 評価結果
事	(総合評価段階:A) ·必 要 性 S	(総合評価段階:A) ·必 要 性:S
前	が省力化できる無側枝性品種が求められている。また、燃油価格上昇と単価低迷により収益性が悪化しており、ボリュームのある低温開花性品種の育成が期待されている。 ・効 率 性 A 今回は、半無側枝性を示す低温開花性系統「長崎8 号」を材料として、2 段階の選抜により目標とする品種	・効 率 性: A 従来からの手法に加えイオンビームを育種手法に 取り入れている点を評価できる。選抜過程において も、関係機関や生産部会、理化学研究所等との役割
	・有 効 性 A 育種目標に近い系統「長崎 8 号」を材料にすることにより、付与する形質が絞り込まれる。これまでの研究から、目標とする成果が得られる確率は高い。すでに普及している「長崎 2 号」の低温開花性などの性質を維持した系統を育成するため、栽培技術もほとんどそのまま利用できるため、迅速な普及が見込まれる。	性、作業性改善に関する研究であり、有用な技術とな
	・総合評価 A 育種目標は高いが、有望な育種素材と有効な育種方 法を用いることで、目標達成は可能である。 また、今回育成する品種は、県内のみならず国内の 主要品種として評価される可能性が大いに期待され る。	・総合評価: A これまでに半無側枝性系統を育成しており、育種素材とすることで早期の実用化を目指す姿勢を評価する。他県も同様な手法と育種目標で研究を開始しており、イオンビームの特性と誘発変異の関係に注目しながら効果的なビームの照射手法を検討し研究を行って欲しい。
	対応	対応 他県の照射手法や素材となる優良系統の情報も収集 し、より効率的に目標達成できるものについては、可 能な限り積極的に取り入れていく。

	(26年度)	(26年度)
	評価結果	評価結果
ኍ		
途	(総合評価段階:A)	(総合評価段階:A)
	├·必 要 性A	·必 要 性A
中	キク無側枝性品種のニーズは依然として高い。 近年	同左
Ι΄.	の急激な燃油価格上昇と、加温不足による品質低下	132
	により経営の収益性が悪化傾向で、低温でもボリュー	
	ムのある低温開花性品種の育成が期待されている。	
	 ·効 率 性A	 ·効 率 性A
	年毎の活動指標は計画どおり実行され、25 年度ま	同左
	でに1次選抜19系統、2次選抜9系統を選抜できた。	
	またイオンビーム照射により42系統選抜済み。	
	突然変異を誘発するため主に「イオンビーム照射」	
	「花弁培養」「枝変わり」の 3 手法で試験中だが、今後	
1	はどの要因が強く作用しているかの解析も進めて欲し	
	l l _o	
	<u></u>	<u></u>
	│·有 効 性 A	│·有 効 性 A
	無側枝性でありながら十分に穂が確保できる有望な	同左
	系統として「1102-46-1」を 25 年度選抜し、この系統を	
	大量増殖して、より特性の優れた系統選抜が期待で	
	きる。経済効果の算定方法が事前段階と同じだが、よ	
	り明確に試算する必要がある。	
	·総合評価A	総合評価A
	本研究は概ね計画どおりに進捗し、目標とする研究成	同左
	果が得られる可能性は高く、今後も計画どおり継続す	1-3-2
	ることが妥当である。	
	対応	対応
	現在得られている無側枝性系統を育種素材として活	同左
	用し、より無側枝性の安定した系統の育成を目指す。	
	(29年度)	(29年度)
	評価結果	評価結果
事	(総合評価段階:)	(総合評価段階:)
	·必要性	·必要性
14.	W & II	W & II
後		
	·効 率 性	·効 率 性
	·有 効 性	·有 効 性
	·総合評価	·総合評価
	対応	対応