(様式1) 研究事業評価調書(平成25年度)

平成 25 年 12 月 10 日作成

事業区分	経常	常研究(基盤)	研究期間	平成26年度~平成27年度	評価区分	事前評価
研究テーマ名		皮膚中の自家質	总光測定技術	の開発		
(副題	<u>i</u>)	(皮膚中の蛍光	物質の測定技	技術開発によるヘルスケアに資する	取り組み)	
主管の機関	関•科(研	研究室)名 研究例	代表者名 二	エ業技術センター・ 食品・環境科	三木伸一	

<県長期構想等での位置づけ>

	2. 産業が輝く長崎県						
 長崎県総合計画	政策5. 次代を担う産業と働く場を生み育てる						
	(3)新産業の創出・育成						
	(4)産学官協働による研究開発・技術支援の展開						
	第3章. 長崎県の科学技術振興の基本的な考え方と推進方策						
科学技術振興ビジョン	2-1. 産業の基盤を支える施策						
	(3)成長分野への展開						
	3. 次代をリードする新産業の創出・育成						
産業振興ビジョン	重点プロジェクト3 新産業(成長分野産業)振興プロジェクト						
	(2)医療・福祉における地域課題の解決と新事業の創出						

1 研究の概要(100 文字)

生体には自から蛍光を発する(自家蛍光^{*1})物質が内在し、皮膚からの自家蛍光は、健康あるいは美容管理の指標として用いられる。本研究では、生体の夾雑物等^{*2}の影響を受けにくい自家蛍光測定技術を開発する。

① 生体の構成物質の光学特性、夾雑物の影響の評価

研究項目

- ② 皮膚の光伝播シミュレーション
- ③ 測定系(計測アルゴリズム、測定システム)の構築

2 研究の必要性

1) 社会的・経済的背景及びニーズ

医療、健康分野は成長分野の一つとして位置づけられており、特に、九州地域においては、高齢化率や医療費負担が高いなど、課題先進地域であり、ヘルスケア分野の需要が期待されている。

ヘルスケアに関する測定機器は、体を傷つけないこと、簡便であること、などが機器の仕様として要求される。そのため、生体(皮膚等)の内在物質からの発光(自家蛍光)を利用する測定技術が、健康の度合い等を診断する有力な技術の一つになっており、AGEs(糖化最終生成物)*3などの皮膚中の自家蛍光物質をより簡便、正確に計測することについてのニーズがある。

2) 国、他県、市町、民間での実施の状況または実施の可能性

農産物、医療応用なども含めると、自家蛍光の計測技術については、国内の大学、民間企業等で実施されている。^{※4}一方、皮膚の自家蛍光のヘルスケア応用については、国内においては、一部の民間企業等で実施されているが、実用化に至っていない。

3 効率性(研究項目と内容・方法)

研究 項目	研究内容·方法	活動指標		H 26	H 27			単位	
	分光分析による光学特性(蛍光、散乱、吸光)		目標	4					
1	の影響評価を行う。(評価項目:濃度、散乱、 構成成分(メラニン、コラーゲン等)、温度)	評価項目数	実績					項目	
	①の結果を基に、光伝播のシミュレーション	シミュレーシ	目標	3				項目	
2	を検討する(項目:蛍光、散乱光、吸光)。	ョン項目数	実績						
	②の結果を基に、計測アルゴリズムを検討す	1グニ 1ホア	目標		5				
3	る 。	検討数	実績					回	
	③の計測アルゴリズムに適した測定系を検	+ ◇ =↓ * / ₁	目標		5				
3	討する。	検討数	実績					回	

1) 参加研究機関等の役割分担

本研究は、基本的には工業技術センターにおいて実施するが、適宜、大学等の協力を得る。 光伝播シミュレーションの基礎となる生体の光学特性については、大阪大学の協力を得て実施する。 また、同志社大学医学部、長崎大学医学部の生体に関する知見、助言を得て研究を進める。

2) 予算

研究予算 (千円)	計 (千円)	人件費 (千円)	研究費			源	
\ 1 1 3/	\ 11 J/	(113/	(千円)	国庫	県債	その他	一財
全体予算	13,222	8,722	4,500				4,500
26 年度	5,861	4,361	1,500				1,500
27 年度	7,361	4,361	3,000				3,000

※ 過去の年度は実績、当該年度は現計予算、次年度以降は案

※ 人件費は職員人件費の見積額

(研究開発の途中で見直した事項)

4 有効性

- DW	<i>)</i> _								
研究 項目	成果指標	目標	実績	H 26	H 27	H 28	H 29	H 30	得られる成果の補足説明等
1	検討項目別の相関 性の解明数	4		4					光学特性の検討項目(濃度、散乱、構成成分(メラニン、コラーゲン等)、温度)の影響を明らかにする。
2	シミュレーションの 確立数	1		1					蛍光、散乱光、吸光を組み合わせた光伝播 シミュレーションを確立する。
3	特許出願数	1			1				計測アルゴリズム等に関する特許を出願する。
3	測定系の構築数	1			1				シミュレーション等を基にした光学系を構築する。

1) 従来技術・先行技術と比較した新規性、優位性

皮膚の光計測は、目的物質以外の夾雑物や散乱等、外因の影響を受ける。海外メーカにおいて、AGEs の 蛍光測定装置(研究用途)が市販されているが、構造上、外因を完全に取り除くことが困難であり、また、高価で ある。本研究担当者は、生体の光学特性等に関する研究実績^{*5} があり、従来のハロゲンランプに替わる波長 の異なる複数の短波長LED^{*6}等の使用や光の伝播シミュレーションに基づいた解析法の確立により、夾雑成 分等の影響を受けない、より簡便、より安価な自家蛍光計測装置の実現を図る。

2)成果の普及

■研究成果の社会・経済への還元シナリオ

光技術研究会等を通じて、企業への情報発信・共有、普及を図る。また、本事業終了後の競争的資金等の獲得を視野に入れ、効率的、効果的に研究成果の技術移転による還元を図る。

■研究成果による社会・経済への波及効果の見込み

経済効果 : ヘルスケア機器の市場規模は 2010 年度で 1200 億円程度(2015 年には、機器と ICT サービスの連携が進むことで市場を底上げし、2300 億円市場になるとの見通し)と報告されており、年々増加の傾向にある。自家蛍光計測装置の当面の市場として、研究用途等で100万円×100台=1 億円程度を想定する。

(研究開発の途中で見直した事項)

研究評価の概要

種 類	自己評価	研究評価委員会
	(25年度)	(25年度)
	評価結果	評価結果
事	(総合評価段階:A)	(総合評価段階:S)
	·必 要性 S	·必 要 性 S
前	本県をはじめ九州地域は、高齢化率や医療費負担	医療費の増大を抑制することにつながるヘルスケア
	が高い課題先進地域であり、先導的に医療、健康分	分野の研究の必要性は高い。光応用を重点分野の一
	野に取り組む役割は大きい。健康管理(ヘルスケア)	つとしている工業技術センターのチャレンジとして望
	の機器開発は地域産業の持続的発展、地域課題の解	ましい取り組みである。
	決に資するもので必要性は高い。	·効 率 性 A
	·効率性A	挑戦的な取り組みであり、技術的に未知の部分も多
	生体の光計測にかかる技術蓄積を有している。ま	いが、事業化につなげるための基盤形成の研究期間
	た、不足する知見等は大学等の外部機関の助言、協	を2年間に限定し、知見を有する大学との連携が計画
	力を得て進めることとしており、効率的に研究を進め	されていることから、研究の効率性は高い。対象とす
	る体制にある。	る疾病をある程度絞り込むなど、より効率的に研究を
	·有 効 性 A	進められるよう工夫することを期待する。
	ヘルスケアに関連する市場は拡大傾向にある。高	·有 効 性 A
	精度な計測装置の開発により、既存装置の置き換え	審議の際に示された先行技術調査の結果によると、
	は基より、化粧品関連や医療現場における診断機器	他の技術と比較して、測定精度、価格、小型化の点で
	など、新たな市場への展開が可能になると考えられ、	優位性がある製品の開発が見込まれ、化粧品関係や
	有効性が高い。	医療分野等の幅広い範囲に製品の応用展開が及ぶ
	·総合評価 A	ことが期待されるため、有効性は高い。
	高齢化が進む本県地域において、予防医療につな	·総合評価 S
	がるヘルスケア関連機器の開発に取り組む意義は大	測定技術の確立には、光学特性に影響を与える複
	きい。外部機関と協力しながら効率的に製品開発を行	数の要因について相関関係の解明が必要であり、成
	い、新たな市場の創出を目指すことで、地域課題の解	功へのハードルは高いが、県内では大学等も含め
	決の一助となることが期待される。	て、医療福祉に積極的に取り組もうという動きがある
		ことから、機関長評価を超える S 評価(積極的に推進
		すべきである)とした。
	対応	対応
		評価委員会の意見に基づき、対象とする疾病の絞り
		込みを図り、効率的に研究に取り組む。
	(年度)	(年度)
	評価結果	評価結果
途	(総合評価段階:)	(総合評価段階:)
	・必 要 性	·必 要 性
中		
	•効 率 性	•効 率 性
	•有 効 性	•有 効 性
	•総合評価	•総合評価
	対応	対応
	(年度)	(年度)
	評価結果	評価結果
事	(総合評価段階:)	(総合評価段階:)

144	·必 要 性	・必 要 性
後	·効 率 性	・効 率 性
	·有 効 性	·有 効 性
	•総合評価	•総合評価
	対応	対応

■総合評価の段階

平成20年度以降

(事前評価)

- S=積極的に推進すべきである
- A=概ね妥当である
- B=計画の再検討が必要である
- C=不適当であり採択すべきでない

(途中評価)

- S=計画以上の成果をあげており、継続すべきである
- A=計画どおり進捗しており、継続することは妥当である
- B=研究費の減額も含め、研究計画等の大幅な見直しが必要である
- C=研究を中止すべきである

(事後評価)

- S=計画以上の成果をあげた
- A=概ね計画を達成した
- B=一部に成果があった
- C=成果が認められなかった

平成19年度

(事前評価)

- S=着実に実施すべき研究
- A=問題点を解決し、効果的、効率的な実施が求められる研究
- B=研究内容、計画、推進体制等の見直しが求められる研究
- C=不適当であり採択すべきでない

(途中評価)

- S=計画を上回る実績を上げており、今後も着実な推進が適当である
- A=計画達成に向け積極的な推進が必要である
- B=研究計画等の大幅な見直しが必要である
- C=研究費の減額又は停止が適当である

(事後評価)

- S=計画以上の研究の進展があった
- A=計画どおり研究が進展した
- B=計画どおりではなかったが一応の進展があった
- C=十分な進展があったとは言い難い

平成18年度

(事前評価)

- 1:不適当であり採択すべきでない。
- 2:大幅な見直しが必要である。
- 3:一部見直しが必要である。
- 4:概ね適当であり採択してよい。
- 5:適当であり是非採択すべきである。

(途中評価)

- 1:全体的な進捗の遅れ、または今後の成果の可能性も無く、中止すべき。
- 2:一部を除き、進捗遅れや問題点が多く、大幅な見直しが必要である。
- 3:一部の進捗遅れ、または問題点があり、一部見直しが必要である。
- 4:概ね計画どおりであり、このまま推進。
- 5:計画以上の進捗状況であり、このまま推進。

(事後評価)

- 1:計画時の成果が達成できておらず、今後の発展性も見込めない。
- 2:計画時の成果が一部を除き達成できておらず、発展的な課題の検討にあたっては熟慮が必要である。
- 3:計画時の成果が一部達成できておらず、発展的な課題の検討については注意が必要である。
- 4:概ね計画時の成果が得られており、必要であれば発展的課題の検討も可。
- 5:計画時以上の成果が得られており、必要により発展的な課題の推進も可。