[成果情報名] 二条大麦「ニシノホシ」の積算気温による葉齢の予測

[要約]二条大麦「ニシノホシ」の葉齢は、播種期、年次によらず積算気温との相関が高く、積算気温(x)から葉齢(y)の予測が可能である。また、慣行栽培の11月中旬播種に最も適合する予測式はy=0.0128 x+0.7098 で示される。

[キーワード] ニシノホシ、葉齢、積算気温、予測

[担当]総合農林試験場·作物園芸部·作物科

[連絡先] 電話 0957-26-3330、電子メール ishibashi-y @ pref.nagasaki.lg.gp

[区分] 農産

[分類] 指導

[背景・ねらい]

焼酎加工用大麦としてのニシノホシの施肥技術確立のため、追肥施用時期の目安となる 葉齢を予測する手法を検討する。

「成果の内容・特徴〕

- 1. 葉齢は播種期、年次によらず、積算気温と高い相関関係を示す(表1)。
- 2. 出葉間隔は年次によらず、播種期が早い程長くなる(表1)。
- 3. 予測式のうち、慣行の11月中旬播種に最も適合するのは式(1)のy=0.0128 x +0.7098 である(表 2)。
- 4. 予測式(1) を用いた時の適合度は、調査時期、年次によって変動するが、概ねよく一致する(表3)。
- 5. 穂肥施用時期の目安を幼穂形成期(幼穂長 2mm)とした場合、11月中旬播きの推定葉齢は6.0~6.9葉で、その時の積算気温は416~440℃である(表4)。

[成果の活用面・留意点]

- 1. 本成果はニシノホシに適用する。
- 2. 追肥施用時期の検討が必要である。
- 3. 11月下旬~12月中旬播種での予測式については適合性の検証が必要である。
- 4. 回帰式の作成に用いた葉齢は、1.5葉~ほぼ止葉展開期までである。

「具体的データ】

表1 葉齢と積算気温との関係

播種期	播種 年次	播種月日	一次回帰式	寄与率 (R ²)	出葉間隔 (℃)	式の 番号
早播	2002 2003	11:13 11:12	y = 0.0128 x +0.7098 y = 0.0131 x +0.4769	0.9975 0.9984	78.1 76.3	(1)
標播	2002 2003	11:25 11:25	y = 0.0139 x +0.2378 y = 0.0140 x +0.1143	0.9926 0.9944	71.9 71.4	(3) (4)
遅播	2002 2003	12:12 12:10	y = 0.0141 x + 0.1894 y = 0.0141 x + 0.4275	0.9901 0.9912	70.9 70.9	(5) (6)
早播標播	年次込		y = 0.0129 x + 0.6099 y = 0.0139 x + 0.1875 y = 0.0141 x + 0.3096	0.9975 0.9931 0.9880	77.5 71.9 70.9	(7) (8) (9)

- 注1) y・・・・葉齢、x・・・積算気温(最高最低平均気温を用い、出芽期の翌日から起算)注2) 葉齢の調査は、各播種期、年次とも概ね1週間間隔で行った。 注3) 出葉間隔は回帰式の勾配の逆数で示した。

表 2 各回帰式の適合性

表3 回帰式(1)を用いた時の適合度

2000

式の	実測値との	年次	199	9
番号	差の平均値	調査	実測	
		時期	葉齢	! !
(1) (2) (3) (4) (5) (6)	$egin{array}{l} \textbf{0.22} &\pm \textbf{0.17} \\ 0.27 &\pm 0.20 \\ 0.27 &\pm 0.23 \\ 0.27 &\pm 0.24 \\ 0.38 &\pm 0.27 \\ 0.38 &\pm 0.27 \\ 0.23 &\pm 0.19 \\ \end{array}$	I II III IV V	5.5 6.6 7.4 8.2 9.7	-(-(-(
(8) (9)	0.23 ± 0.19 0.25 ± 0.24 0.32 ± 0.25	注 1) 詞	調査時期	期

調査時期	実測葉齢	差	実測葉齢		実測葉齢	差	実測 葉齢	差	実測葉齢	
I III IV V	6.6 7.4 8.2	-0.5 -0.3 -0.3 -0.2 -0.2	6.8 7.5	-0.1 -0.5 -0.1 -0.1 0.1	6.8 7.7 9.4	-0.3 -0.6 -0.3 -0.3 -0.3	4.6 5.6 6.7 8.3 9.8	0.2 0.0 0.1 0.1 0.3		0.1 0.0 0.0 -0.1 -0.3

2001

2002

2003

時期: I -1/10 ~ 1/14、II -1/29 ~ 1/31、III-2/12 ~ 2/14

IV $-2/26 \sim 3/1$, V $-3/13 \sim 3/15$

注 2) 播種期: 11/16~11/19、出芽期: 11/27~12/2

注 3) 品種: ニシノホシ

注)場内畑作況試験の データ(n=5 ケ年×5 調査時期=25)を用いた。

表 4 幼穂長 2mm 時の葉齢、月日、積算気温

播種年次	早播 葉齢 月:日 積算気温			葉齢	標播 葉齢 月:日 積算気温			平均(11 月中旬播) 葉齢 月:日 積算気温		
2002 2003 2004	6.1 6.5 6.9	1:25 1:11 12:31	436.2 466.6 448.6	5.9 6.2 6.9	2:08 2:07 2:10	396.6 425.3 432.1	6.0 6.4 6.9	2:01 1:25 1:21	416.4 446.0 440.4	
平均	6.5	1:12	450.5	6.3	2:08	418.0	6.4	1:26	434.3	

注) 1 週間間隔の解剖調査データから幼穂長 2mm 期の葉齢とその時の月日、積算気温を求めた。 「その他」

研究課題名:特産焼酎加工用大麦の高品質・安定栽培技術確立

予算区分:県単

研究期間: 2002~2004年度

研究担当者:石橋祐二、下山伸幸、佐田利行