ブドウ浜崎系‘巨峰’ウイルス無毒樹における
高品質果実の安定生産技術の確立

森田 昭

Establishiment of Technology for Stable Production of
High Quality Grape from Berry in Virus-free Tree of Hamsaki-strain 'Kyoho'

Akira MORITA

緒 言

長崎県内で栽培されているブドウ栽培の主要品種である‘巨峰’は、ウイルス病の感染により着色不良、低糖度など品質の低下が一部の地域で問題になった。そのため当試験場では、県内産地から優良系統を選抜し、茎頂培養法でウイルス無毒樹を作出し、高糖度、着色良好など品質的に優れている浜崎系‘巨峰’ウイルス無毒樹を得た。ところが、この無毒樹は樹勢旺盛なため、花着るいや単為結果をおこしやすいことから、収量が低下するなど新たな問題が生じ、安定多収技術の確立が切望されている。

そこで、安山玄武の重粘土地帯の長崎県果樹試験場のほか場でブドウ浜崎系‘巨峰’ウイルス無毒樹における果（花）房管理による着粒及び果粒形質の向上技術を検討した。また、（花）房管理の中で最も労力を要する作業である花房整理の省力的な方法を併せて検討した。

1. 果（花）房管理による着粒及び果粒形質の向上

ブドウ‘巨峰’ウイルス無毒樹は樹勢旺盛なため、花着るいや単為結果をおこしやすく収量が低下するなどの問題がある。そこで、ブドウ浜崎系‘巨峰’ウイルス無毒樹における果（花）房管理による着粒及び果粒形質向上法を検討した。

1）果粒形質向上のための結果枝での花房位置、花穂の利用段数と果粒形質との関係

（1）材料及び方法

供試樹は露地栽培の浜崎系‘巨峰’ウイルス無毒樹（4年生揮木樹）を用いた。調査は摘取時（1997年6月12日）着粒率、有核粒数及び無核粒数を、収穫時に1粒重、果重、果皮色、糖度、酸含量、房締まり度などについて行った。果の締まり度は果粒の状態を、a：粒間に隙間がない（指数：3），b：粒間に隙間があり果軸及び小果梗が散見される（指数：2），c：果軸及び小果梗が露出している（指数：1）と3段階に指数化し、房締まり度＝（aの果房数×3+bの果房数×2+cの果房数×1）÷（全調査果房数×3）で算出した。

（2）結果及び考察

結果枝での花房の着生位置については第2花房が第1花房に比べ有核粒率は高い傾向にあるが、1粒
重は軽かった（第1表）。しかし、開花前に1花房にすると第1花房と第2花房の1粒重の差は認められなかった（第2表）。花穂の利用度数と果粒及び果粒形質との関係については、花穂の段数が多く、大穂になると有核粒率が低く、1粒重も軽くなり、収穫度も低くなる傾向を示した（第3表）。花穂の利用部位と果粒形質及び房型との関係は、有核粒率や果粒形質などには差がないが、房の締まり度は花房の先端を利用するほど大い値を示した。しかし、台風の害は花穂の上位10段を除去した

第1表 結果枝での花房の着位置と着粒及び果粒形質との関係（1997）

<table>
<thead>
<tr>
<th>花房の着位置</th>
<th>房数</th>
<th>平均着粒</th>
<th>着粒</th>
<th>有核</th>
<th>1粒</th>
<th>果皮*</th>
<th>粒度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>粒数 (%)</td>
<td>率 (%)</td>
<td>重 (g)</td>
<td>色</td>
<td>糖度 (g/100mL)</td>
<td>酸含量</td>
<td></td>
</tr>
<tr>
<td>第1花房(A)</td>
<td>50</td>
<td>39.0</td>
<td>32.5</td>
<td>25.1</td>
<td>254.0</td>
<td>12.8</td>
<td>9.0</td>
<td>19.2</td>
</tr>
<tr>
<td>第2花房(B)</td>
<td>50</td>
<td>40.0</td>
<td>33.3</td>
<td>31.1</td>
<td>226.9</td>
<td>11.7</td>
<td>9.1</td>
<td>19.4</td>
</tr>
<tr>
<td>A : B</td>
<td>NS</td>
<td>NS</td>
<td>**</td>
<td>**</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

* 果皮色は黒色ブドウのカラーチャートによる

第2表 花房数を開花前に1穂にした場合の花房の
着位置と果粒形質との関係（1997）

<table>
<thead>
<tr>
<th>花房の着位置</th>
<th>平均着粒</th>
<th>着粒</th>
<th>1粒</th>
<th>果皮*</th>
<th>糖度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>粒数 (個)</td>
<td>率 (%)</td>
<td>重 (g)</td>
<td>色</td>
<td>糖度 (g/100mL)</td>
<td>酸含量</td>
</tr>
<tr>
<td>第1花房(A)</td>
<td>19.4</td>
<td>247.4</td>
<td>12.7</td>
<td>9.1</td>
<td>19.4</td>
<td>0.25</td>
</tr>
<tr>
<td>第2花房(B)</td>
<td>19.1</td>
<td>238.8</td>
<td>12.4</td>
<td>9.2</td>
<td>19.3</td>
<td>0.28</td>
</tr>
<tr>
<td>A : B</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

* 果皮色は黒色ブドウのカラーチャートによる

第3表 花穂の段数と着粒及び果粒形質（1997）

<table>
<thead>
<tr>
<th>花穂</th>
<th>全着</th>
<th>着粒</th>
<th>有核</th>
<th>1粒</th>
<th>房幅</th>
<th>転長</th>
<th>糖度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>粒数 (個)</td>
<td>率 (%)</td>
<td>重 (g)</td>
<td>重 (cm)</td>
<td>先端 (cm)</td>
<td>糖度 (g/100mL)</td>
<td>酸含量</td>
<td></td>
</tr>
<tr>
<td>8〜12</td>
<td>30.4</td>
<td>27.6</td>
<td>15.8</td>
<td>11.2</td>
<td>7.8</td>
<td>5.9</td>
<td>7.4</td>
<td>21.4</td>
</tr>
<tr>
<td>13〜15</td>
<td>30.6</td>
<td>23.5</td>
<td>14.6</td>
<td>10.7</td>
<td>7.2</td>
<td>4.3</td>
<td>8.8</td>
<td>20.9</td>
</tr>
<tr>
<td>16〜18</td>
<td>35.8</td>
<td>22.3</td>
<td>14.6</td>
<td>10.2</td>
<td>7.1</td>
<td>5.4</td>
<td>9.6</td>
<td>20.6</td>
</tr>
</tbody>
</table>

第4表 花穂の利用部位と果粒形質（1997）

<table>
<thead>
<tr>
<th>花穂</th>
<th>花穂</th>
<th>全着</th>
<th>着粒</th>
<th>有核</th>
<th>1粒</th>
<th>房締</th>
<th>台風</th>
<th>糖度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>粒数 (個)</td>
<td>率 (%)</td>
<td>重 (g)</td>
<td>重</td>
<td>締まり度</td>
<td>房数</td>
<td>糖度 (g/100mL)</td>
<td>酸含量</td>
</tr>
<tr>
<td>上位5段</td>
<td>50</td>
<td>40.6</td>
<td>33.8</td>
<td>26.0</td>
<td>13.0</td>
<td>87.2</td>
<td>0</td>
<td>20.9</td>
<td>0.389</td>
</tr>
<tr>
<td>上位7段</td>
<td>50</td>
<td>39.4</td>
<td>32.8</td>
<td>26.8</td>
<td>12.7</td>
<td>89.0</td>
<td>0</td>
<td>21.2</td>
<td>0.377</td>
</tr>
<tr>
<td>上位10段</td>
<td>50</td>
<td>39.7</td>
<td>33.1</td>
<td>29.0</td>
<td>12.6</td>
<td>93.4</td>
<td>7</td>
<td>20.8</td>
<td>0.391</td>
</tr>
</tbody>
</table>

先端利用房に多かった（第4表）。このように、花穂の利用部位によって房締まり度が異なることから、先端利用房に多かった方が良いとは花房の先端を利用し、化粧箱に詰める時は詰めやすく、花房
2）果粒肥大のもと1果房当たりの最適着粒数

（1）材料及び方法

供試樹は屋根掛けハウス及び圃地栽培の試験地、巨峰ウイルス無毒樹（9年生棚木）を用い、対照樹として、圃地栽培の試験地の巨峰ウイルス保毒樹（9年生棚木）を用いた。なお調査果房は各栽培法ともそれぞれ、30果房を用いた。処理は摘果時（1996年6月12日）に行なった。調査は収穫時（8月22日）に1粒当りの果皮色、果皮色、糖度、酸含量の5項目について、前試験と同様にして行った。

（2）結果及び考察

第5表 1果房の粒数と果粒形質との関係（1996）

<table>
<thead>
<tr>
<th>栽培法</th>
<th>粒数（個）</th>
<th>1粒重（g）</th>
<th>房重（g）</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量（g/100㎖）</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根掛けハウス栽培</td>
<td>10</td>
<td>13.4</td>
<td>137.0</td>
<td>10.0</td>
<td>19.7</td>
<td>0.45</td>
</tr>
<tr>
<td>ウイルス無毒樹</td>
<td>15</td>
<td>14.0</td>
<td>210.6</td>
<td>10.0</td>
<td>19.7</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>14.2</td>
<td>267.9</td>
<td>10.0</td>
<td>19.9</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>13.3</td>
<td>278.3</td>
<td>10.0</td>
<td>19.4</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>11.9</td>
<td>371.8</td>
<td>10.0</td>
<td>18.7</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>10.1</td>
<td>397.0</td>
<td>9.7</td>
<td>18.7</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>10.3</td>
<td>462.1</td>
<td>9.0</td>
<td>18.6</td>
<td>0.43</td>
</tr>
<tr>
<td>露地栽培</td>
<td>10</td>
<td>11.9</td>
<td>121.1</td>
<td>10.0</td>
<td>22.0</td>
<td>0.42</td>
</tr>
<tr>
<td>ウイルス無毒樹</td>
<td>15</td>
<td>12.5</td>
<td>189.9</td>
<td>10.0</td>
<td>20.7</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>11.6</td>
<td>235.5</td>
<td>10.0</td>
<td>20.6</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10.9</td>
<td>276.3</td>
<td>10.0</td>
<td>20.7</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.4</td>
<td>281.2</td>
<td>9.6</td>
<td>19.8</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>9.0</td>
<td>313.6</td>
<td>9.6</td>
<td>19.7</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>8.0</td>
<td>321.2</td>
<td>8.2</td>
<td>18.8</td>
<td>0.48</td>
</tr>
<tr>
<td>対照（露地栽培）</td>
<td>20</td>
<td>10.3</td>
<td>213.0</td>
<td>9.0</td>
<td>18.2</td>
<td>0.49</td>
</tr>
</tbody>
</table>

*果皮色は黒色ブドウのカラーチャートによる

1果房当たりの粒数と果粒形質との関係については、1粒重は1果房当たり5粒までは粒数を多くしても差がないが、50粒以上になると軽くなる傾向を示し、果皮色、糖度、酸含量は粒数が少ないほど向上し、25粒以下でその傾向が顕著であった。酸含量は粒数の多少で差がなかった。このことは、圃地、屋根掛け栽培ともに同様な傾向を示した（第5表）。1果房の粒数が1粒以上であれば、果地径が大きいと1粒重が重く、ときに、ウイルス無毒樹でその傾向が大であった。しかし、果地径が小さいと酸含量が高く、糖度は低かった。このことは保毒樹で顕著であった（第6表）。この結果から、1果房当たりの粒数は20～25粒が適当と思われる。

第6表 果地径と果粒品質（1996）

<table>
<thead>
<tr>
<th>果地径（mm）</th>
<th>糖度（g）</th>
<th>酸含量（g/100㎖）</th>
<th>糖度（g）</th>
<th>酸含量（g/100㎖）</th>
</tr>
</thead>
<tbody>
<tr>
<td>棚木：ウイルス無毒樹</td>
<td>11.0</td>
<td>19.2</td>
<td>0.48</td>
<td>10.3</td>
</tr>
<tr>
<td>保毒樹</td>
<td>11.9</td>
<td>17.6</td>
<td>0.53</td>
<td>12.4</td>
</tr>
</tbody>
</table>

３）果粒形質向上のための果（花）房除去法と時期

（１）材料及び方法

供試樹は蒸地栽培の浜崎系‘巨峰’ウイルス無毒樹（9年生植木樹）を用いた。摘果（花）房の方法と果粒形質の処理時期は開花前（1997年5月15日）に、摘果房時期と果粒形質の処理時期は袋掛け（1997年6月17日）、水回り期（7月16日）、収穫期（8月21日）に行った。調査は摘果時（1997年6月12日）に着粒数、有核粒数及び無核粒数を、収穫時（8月21日）に果重、1粒重、果皮色、糖度及び酸含量について行った。

（２）結果及び考察

第2花房のみ整房し、第1花房を放任すると、第2花房の着粒数は全花房を整房した区より高かった（第7表）。このことは、第1花房でジェベレリンが散放されるために第2花房のジェベレリン濃度が低下するためではないかと推察される。摘果房期については実施時期が早いと果粒が大きくなる傾向

<table>
<thead>
<tr>
<th>区</th>
<th>摘果（花）房の方法と果粒形質との関係（1997）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>供試</td>
</tr>
<tr>
<td></td>
<td>(個)</td>
</tr>
<tr>
<td>I</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>50</td>
</tr>
<tr>
<td>III</td>
<td>50</td>
</tr>
</tbody>
</table>

*: I: 全房を整房して、着粒確認後第1果（花）房を切除する
 Ⅱ: 結果母枝の先端2果（花）房を放任し、他は着粒確認後第1果（花）房を切除する
 Ⅲ: 第2果（花）房のみ整房し、他は放任して着粒確認後切除する

第8表 摘果房時期と果粒形質との関係（1997）

<table>
<thead>
<tr>
<th>区</th>
<th>摘果房期</th>
<th>供試</th>
<th>果皮重</th>
<th>糖度</th>
<th>酸含量 (g/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(個)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>袋掛け時に60％摘房</td>
<td>50</td>
<td>13.0</td>
<td>9.5</td>
<td>19.3</td>
</tr>
<tr>
<td>2</td>
<td>水回り期に60％摘房</td>
<td>50</td>
<td>11.7</td>
<td>10.0</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>収穫期まで無摘房</td>
<td>50</td>
<td>9.7</td>
<td>4.1</td>
<td>16.1</td>
</tr>
</tbody>
</table>

を示した。また、収穫期まで無摘房すると果皮色が著しく劣った（第8表）。そこで、摘果（花）房は2花着棲枝の摘果房は第2花房のみを整房し、第1花房は放任して第2花房の着粒確認後に切除し、摘果房時期は袋掛け時に最適と思われる。

４）省力的整房法

（１）材料及び方法

供試樹は蒸地栽培の浜崎系‘巨峰’ウイルス無毒樹（9年生植木樹）を用いた。処理は1996年6月15日に行行った。供試果房の粒数は摘果時

-18-
（2）結果及び考察

整房法が果粒形質に及ぼす影響については着粒率、有核粒率、1粒重、果皮色、糖度、酸含糖、腐敗房数は整房法では差が認められなかったが（第9表），
軸長は鉄かきが手かきや楳かきに比べて短かった。

手かきによる整房処理の所要時間は鉄かきの1/6，
楳かきの1/4で，最も所要時間が短く，手かきは
軸長がやや長くなるが省力的な整房法である。

【表9】整房法と果粒形質及び所要時間（1997）

<table>
<thead>
<tr>
<th>整房法</th>
<th>供試</th>
<th>平均着粒</th>
<th>着粒</th>
<th>有核</th>
<th>軸長</th>
<th>1粒</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含糖</th>
<th>腐敗</th>
<th>所要</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>粒数</td>
<td>(%)</td>
<td>粒率</td>
<td>(%)</td>
<td>軸長</td>
<td>(cm)</td>
<td>重</td>
<td>(g)</td>
<td>100mg</td>
<td>(g/100mg)</td>
<td>時間</td>
</tr>
<tr>
<td>手かき</td>
<td>100</td>
<td>39.6</td>
<td>33.0</td>
<td>31.7</td>
<td>13.9</td>
<td>11.8</td>
<td>9.6</td>
<td>20.4</td>
<td>0.29</td>
<td>0</td>
<td>7.0</td>
</tr>
<tr>
<td>楳かき</td>
<td>100</td>
<td>41.4</td>
<td>34.5</td>
<td>32.2</td>
<td>14.3</td>
<td>11.4</td>
<td>9.7</td>
<td>19.9</td>
<td>0.28</td>
<td>0</td>
<td>13.8</td>
</tr>
<tr>
<td>鉄かき</td>
<td>100</td>
<td>39.2</td>
<td>32.7</td>
<td>31.8</td>
<td>12.7</td>
<td>12.0</td>
<td>10.0</td>
<td>20.0</td>
<td>0.30</td>
<td>0</td>
<td>42.6</td>
</tr>
</tbody>
</table>

* 果皮色は黒色ブドウのカラーチャートによる

【表10】花房開花程度別の手かき整房時期が着粒，所要時間及び
房型に及ぼす影響（1997）

処理時期の	供試	平均着粒	着粒	有核	軸長	1粒	楻	長さ	幅	腐敗	所要
花房の開花状況	粒数	(%)	粒率	(%)	軸長	(cm)	(g)	(cm)	(cm)	時間	(秒/房)
(%)	(個)	(%)	粒率	(%)	(cm)	(cm)	(g/100mg)	(cm)	(cm)	(個)	(秒/房)
0	30	39.8	33.2	29.2	14	6	0	10.0			
1～20	30	40.5	33.8	30.4	14	6	0	6.4			
21～100	30	40.7	33.9	25.8	13	7	0	7.0			

【表11】手かきによる整房処理の1日の実施時期が着粒，軸傷及び
所要時間に及ぼす影響（1997）

処理時期	供試	平均着粒	着粒	有核	軸長	所要		
粒数	粒数	(%)	粒率	(%)	軸長	(cm)	時間	(秒/房)
(個)	(個)	(%)	粒率	(%)	(cm)	(秒/房)		
9時～10時	30	41.5	34.6	31.7	13.6	0	0	6.4
15時～16時	30	40.5	33.8	30.4	14.2	0	7	8.7

【表12】手かきによる整房処理時の灌水の有無が着粒，軸傷及び
所要時間に及ぼす影響（1997）

灌水の有無	供試	平均着粒	着粒	有核	軸長	所要		
粒数	粒数	(%)	粒率	(%)	軸長	(cm)	時間	(秒/房)
(個)	(個)	(%)	粒率	(%)	(cm)	(秒/房)		
灌水前	30	41.8	34.8	31.3	13.3	0	12	8.4
灌水30分後	30	42.0	35.0	31.6	13.2	0	0	6.7
た（第10表）。このことから、ブドウの手手き整房処理時期は開花初期が最適であることが明らかになった。また、手手きによる整房処理の1日の実施時期については、9時～10時の処理が15時～16時処理よりも散布が数多く、整房処理の所要時間も短かった。（第11表）。また、灌漑後は灌漑前より、所要時間も短かかった（第12表）。

2. 着粒前の枝管理に着粒及び果粒形質の向上

ブドウ‘巨峰’ウイルス無毒樹は樹勢が旺盛なため、花開るいや単独果をおくこしやすい。そこで、着粒前の新しい枝（枝）管理によって樹勢を安定させ、着粒及び果粒形質を向上させる方法を検討した。

（１）結果枝枝の芽傷及びメリット青液被処理と萌芽率及び結果果枝との関係

（１）材料及び方法

供試枝枝は浜崎系‘巨峰’ウイルス無毒樹（6年生樅木枝）4枝、枝につき長さ180～230cmの結果枝枝を各処理区3本、計12本を用いた。処理時期及び方法については1995年2月23日に以下の処理を行った。
①芽傷＋メリット青塗布：すべての枝のすぐ上に芽傷で傷付け、その処理部位に蔚にメリット青2倍液を塗布。
②芽傷処理：すべての枝のすぐ上に芽傷で付傷。
③すべての枝にメリット青2倍液を塗布。
④無処理。調査は各処理区の結果枝枝について萌芽日（芽の先端が割れ、第1葉の先端が見えたとき）、萌芽期（その枝の20～30％で第1葉が見え始めたとき）及び萌芽率を調べた。新芽の伸展の測定は全長を1995年5月24日（開花期）と7月10日（穂穂期）に調査し、その間の伸展量の平均で示した。また、各結果枝枝の先端5芽の最长の新梢の長さを同様に測定した。

（２）結果及び考察

芽傷処理及びメリット青2倍液塗布とともに萌芽率を高める効果があり、両者を併用するとより効果が高く、萌芽率が90％以上となった（第13表）。結果枝枝の先端5芽の長さの新梢の開花期以降の伸展は無処理区が最も長く、次いでメリット青塗布区であった。芽傷区と芽傷＋メリット青塗布区は無処理区の1/2以下の新梢長であった。

芽傷＋メリット青塗布区の新梢の平均長は開花期の時点で57.1cmと、無処理区と比べて4倍以上のが長さであった（第13表）。このことは、芽傷＋メリット青塗布処理区は無処理区と比べて萌芽率が90％以上高く、萌芽期及び萌芽日も早く、萌芽期間も短く、萌芽が進んでいたことを示す（第14表）。芽傷＋メリット青塗布区は先端から14芽までに萌芽した新梢の長さが約100cm以上であった。一方、無処理区は先端芽の新梢長は150cm以上であったが、第2芽から以降は50cm以下で短かった（第1図）。

第13表 結果枝枝における芽傷処理、メリット処理が萌芽率及び新梢の長さに及ぼす影響

<table>
<thead>
<tr>
<th>処理区</th>
<th>枝長（cm）</th>
<th>枝芽数</th>
<th>萌芽率（％）</th>
<th>先端5芽の長さ（cm）</th>
<th>最長新梢（cm）</th>
<th>平均長（cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>芽傷＋メリット</td>
<td>204.7</td>
<td>20.7</td>
<td>92.7</td>
<td>109.0</td>
<td>127.7</td>
<td>18.7</td>
</tr>
<tr>
<td>芽傷</td>
<td>204.3</td>
<td>21.7</td>
<td>85.4</td>
<td>100.3</td>
<td>116.0</td>
<td>15.7</td>
</tr>
<tr>
<td>メリット</td>
<td>212.7</td>
<td>21.8</td>
<td>61.6</td>
<td>109.8</td>
<td>147.0</td>
<td>37.2</td>
</tr>
<tr>
<td>無処理</td>
<td>212.8</td>
<td>21.0</td>
<td>51.6</td>
<td>84.5</td>
<td>137.8</td>
<td>53.3</td>
</tr>
</tbody>
</table>
第14表 芽傷処理、メリット塗布が萌芽及び展葉に及ぼす影響

<table>
<thead>
<tr>
<th>処理区</th>
<th>萌芽日</th>
<th>萌芽期間</th>
<th>萌芽率</th>
</tr>
</thead>
<tbody>
<tr>
<td>芽傷＋メリット</td>
<td>3.29〜4.4</td>
<td>7</td>
<td>4.4</td>
</tr>
<tr>
<td>芽傷</td>
<td>3.31〜4.6</td>
<td>7</td>
<td>4.7</td>
</tr>
<tr>
<td>メリット</td>
<td>3.31〜4.7</td>
<td>8</td>
<td>4.7</td>
</tr>
<tr>
<td>無処理</td>
<td>4.3〜4.14</td>
<td>12</td>
<td>4.10</td>
</tr>
</tbody>
</table>

以上の結果から、ウイルス無毒樹の萌芽を促進し、結果母枝の各節部から萌芽させるには芽傷処理とメリット塗布の併用処理が最も効果が高く、次いで芽傷処理が萌芽促進効果が高いことが明らかになった。また、ウイルス無毒樹は新芽の伸長が旺盛であること、植付け1年目にも主枝を作り、副枝を利用して樹容面積の拡大を図り、2年目に芽傷＋メリット塗布処理を用いて結果枝を増加させると早期成園化も可能であると思われる。

（2）ウイルス無毒樹の結果母枝枯死の要因

解明

（1）材料及び方法

供試樹は浜崎系‘巨峰’ウイルス無毒樹（6年生の槿木）を用い、せん定時（1996年1月17日）の枝長で50〜100cm、101〜150cm、151〜200cm、201〜250cm、251cm以上の5グループに分けた結果母枝（上位枝）とその真下の結果母枝（下位枝）各50本を試験した。調査項目は上位枝については枝長、二次伸長率、枯れ枝数及び枯れ枝率を、下位枝については枝長、枯れ枝数及び枯れ枝率を（1996年1月17日に調査した。枯死部位が1節以上発生した枝を枯れ枝とした。

第15表 ブドウ’巨峰’の上位枝の新芽の伸長と下位枝の枯れ枝数発生との関係

<table>
<thead>
<tr>
<th>枝長（cm）</th>
<th>二次伸長率（％）</th>
<th>枯れ枝数（本）</th>
<th>枯れ枝率（％）</th>
<th>枝長（cm）</th>
<th>枯れ枝数（本）</th>
<th>枯れ枝率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>50〜100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>91〜135</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101〜150</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>117〜132</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>151〜200</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>25〜62</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>201〜250</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>15〜36</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>251以上</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>21〜29</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

（2）結果及び考察

上位枝が100〜150cmの結果母枝は6％（3本）が二次伸長し、151cm以上の結果母枝はすべての枝が二次伸長した。しかし、枯れ枝は全面で発生を認めなかった。上位枝が50〜150cmの場合、下位枝の枝長は91〜135cmで枯れ枝は発生しなかった。しかし、上位枝の枝長が151cm以上になると下位枝の枝長は65cm以下になり枯れ枝が発生し、上位枝の枝長が201cm以上になると下位枝の枝長が36cm以下と短くなり、すべての枝に枯れ枝が発生した（第15表）。

枯れ枝は枝長が枝（どぶずら）やその二次伸長枝に発生するのではなく、そのすぐ下の下位枝に発生することが判明した。上位枝の枝長が200cm以上になると下位枝のすべてに枯れ枝が発生し、枝長が36cm以下になる。このように上位枝が強大であると下位枝が充分不良となり枯死枝が発生するものと思われる。また、上位枝が二次伸長すると下位枝の枯れ枝率が高くなり、これも上位枝に養分がとられ下位枝が充分不良となるためと思われる。そこで、下位枝の枯れ枝発生を防止するためにはウイルス無毒樹の結果母枝長をせん定時に150cm以下に抑えることが重要である。
３）新しよう長と着粒数及び果粒形質との関係

（１）材料及び方法

供試樹は屋根掛け栽培の坂崎系‘巨峰’ウイルス無毒樹（9年生桝木樹）を用いた。供試した新しようは1996年5月17日（開花初期）に長さを測定し、新しよう長21〜50cm、51〜80cm、81〜110cm、111〜142cmの4区に分け、それぞれ20本を用いた。調査は1996年5月17日（開花初期）と6月20日（摘粒期）に新しよう長及び着果量を、6月20日（摘粒期）に新よう長及び有核果数を測定した。

1粒重は1房当たり10粒の重さを測定し、その平均で示した。果皮色は黒色系ブドウのカラーチャートによって、糖度及び酸含量は房の肩部2粒、中央部1粒、先端部2粒計、1房当たり5粒をまとめて測定した。

（２）結果及び考察

開花初期から摘粒期までの間に新しよう（結果枝）の伸長が著しいと着粒率が低下した（第16表、第17表）。開花初期に長さ21〜50cmの新しよう（結果枝）は有核率、収穫果粒の糖度が最も高く、果皮色も優れていた。開花初期に長さ111〜142cmの新しようは摘粒期には約2.5倍に伸長し、有核率が大幅に低下（第25表）。これらの結果から、開花初期の新しよう長は21〜50cmが最適と思われる。

第16表 開花初期の新しよう（結果枝）長とその後の枝伸長程度及び葉数増殖との関係

<table>
<thead>
<tr>
<th>開花初期の新しよう長（cm）</th>
<th>平均新しよう長（cm）</th>
<th>枝伸長（cm）</th>
<th>枝伸長率（%）</th>
<th>葉数（枚）</th>
<th>増葉（枚）</th>
<th>増葉率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>21〜50</td>
<td>40.0</td>
<td>55.2</td>
<td>15.3</td>
<td>1.38</td>
<td>7.2</td>
<td>10.7</td>
</tr>
<tr>
<td>51〜80</td>
<td>67.4</td>
<td>132.3</td>
<td>64.9</td>
<td>1.96</td>
<td>9.7</td>
<td>17.2</td>
</tr>
<tr>
<td>81〜110</td>
<td>96.1</td>
<td>212.5</td>
<td>116.5</td>
<td>2.21</td>
<td>11.2</td>
<td>23.4</td>
</tr>
<tr>
<td>111〜142</td>
<td>124.3</td>
<td>315.1</td>
<td>190.8</td>
<td>2.53</td>
<td>12.6</td>
<td>28.6</td>
</tr>
</tbody>
</table>

第17表 開花初期の新しよう（結果枝）長と着粒及び果粒形質との関係

<table>
<thead>
<tr>
<th>開花初期の新しよう長（cm）</th>
<th>全着粒数（個）</th>
<th>有核粒数（個）</th>
<th>無核粒数（個）</th>
<th>着粒数（個）</th>
<th>無核着粒数（個）</th>
<th>1粒重（g）</th>
<th>糖度（％）</th>
<th>酸含量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>21〜50</td>
<td>30.7</td>
<td>26.7</td>
<td>4.1</td>
<td>23.6</td>
<td>20.5</td>
<td>12.4</td>
<td>10.0</td>
<td>18.5</td>
</tr>
<tr>
<td>51〜80</td>
<td>32.7</td>
<td>10.7</td>
<td>20.8</td>
<td>25.3</td>
<td>8.2</td>
<td>12.9</td>
<td>9.9</td>
<td>17.9</td>
</tr>
<tr>
<td>81〜110</td>
<td>37.0</td>
<td>13.6</td>
<td>23.4</td>
<td>28.5</td>
<td>10.5</td>
<td>12.1</td>
<td>9.7</td>
<td>17.8</td>
</tr>
<tr>
<td>111〜142</td>
<td>27.5</td>
<td>5.3</td>
<td>22.2</td>
<td>21.2</td>
<td>4.1</td>
<td>12.8</td>
<td>8.8</td>
<td>17.8</td>
</tr>
</tbody>
</table>

４）最適葉果比

（１）材料及び方法

供試樹はブドウ坂崎系’巨峰’ウイルス無毒（4年生桝木樹）を1区2樹用いた。各供試樹は開花期（1997年5月18日）に1株当たりの新しよう長及びその長さを測定した。

1花房当たり8, 12, 16, 20葉になるよう摘房し、対照は無摘房（1花房当たり5葉）とした。なお、1果房の果粒数はすべて20粒とした。調査は開花期（5月18日）の1花房当たり果数、摘房70日後（7月28日）の1房当たり果数、摘房時と摘房70日後の果粒数（L1）、摘房期と摘房50日後の枝長測定による枝伸長長などについて行った。また、収穫時には1房重、1粒重、果皮色、糖度、酸含量を測定した。

（２）結果及び考察

1果房当たりの果数と樹体生長との関係は、1果房当たり果数20枚になると摘房70日後の果粒数は2.69、摘房50日後の枝伸長長は1.52となり過膨
茂状態になった（第18表）。1果（花）房当たりの葉数が16枚までは葉数が増加するにしたがって、果挿盛期は早くなるが、20枚区は16枚区に比べ遅くな る傾向を示した（第20表）。1果（花）房当たりの粒重は重く、果皮色は向上し、糖度は高くなるが、葉数が5枚の樹と8枚の樹での1果挿果数の1果当たりの葉数と果皮色との関係は、両樹とも1果挿果数 なりの葉数が多いほど果皮色が良かった（第21表）。

第18表　1果（花）房当たりの葉数数と樹体生育（1997年）

<table>
<thead>
<tr>
<th>満開期の1果（花）房当たり葉数数</th>
<th>1樹当たり葉数</th>
<th>房数</th>
<th>1果挿果数</th>
<th>葉面積指数（LAI）</th>
<th>平均枝長</th>
<th>枝伸長率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>①/③</td>
<td>②/③</td>
<td>④</td>
</tr>
<tr>
<td>5枚区</td>
<td>2.910</td>
<td>4.318</td>
<td>631</td>
<td>4.7</td>
<td>6.9</td>
<td>0.95</td>
</tr>
<tr>
<td>8枚区</td>
<td>2.431</td>
<td>4.608</td>
<td>304</td>
<td>8</td>
<td>15.2</td>
<td>1.35</td>
</tr>
<tr>
<td>12枚区</td>
<td>1.997</td>
<td>3.656</td>
<td>167</td>
<td>12</td>
<td>23.0</td>
<td>1.13</td>
</tr>
<tr>
<td>16枚区</td>
<td>2.312</td>
<td>4.291</td>
<td>149</td>
<td>16</td>
<td>28.3</td>
<td>1.22</td>
</tr>
<tr>
<td>20枚区</td>
<td>2.611</td>
<td>5.239</td>
<td>130</td>
<td>20</td>
<td>40.3</td>
<td>1.60</td>
</tr>
</tbody>
</table>

* ①：満開期（5月18日）, ②：満開70日後（7月28日）, ③：房数, ④：満開50日後（7月8日）
* 無摘房（放任）樹
* 2樹の平均

第19表　処理当時の1果（花）房当たりの葉数数と果粒形態との関係（1997年）

<table>
<thead>
<tr>
<th>満開期の1果（花）房当たり葉数数</th>
<th>1果重</th>
<th>1粒重</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含糖</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g)</td>
<td>(g)</td>
<td></td>
<td>(g/100ml)</td>
<td></td>
</tr>
<tr>
<td>5枚区</td>
<td>186.3</td>
<td>9.7</td>
<td>4.1</td>
<td>16.1</td>
<td>0.25</td>
</tr>
<tr>
<td>8枚区</td>
<td>215.9</td>
<td>11.3</td>
<td>8.8</td>
<td>18.4</td>
<td>0.28</td>
</tr>
<tr>
<td>12枚区</td>
<td>215.0</td>
<td>11.5</td>
<td>9.5</td>
<td>19.8</td>
<td>0.26</td>
</tr>
<tr>
<td>16枚区</td>
<td>225.2</td>
<td>12.1</td>
<td>9.5</td>
<td>19.8</td>
<td>0.29</td>
</tr>
<tr>
<td>20枚区</td>
<td>220.7</td>
<td>11.0</td>
<td>9.0</td>
<td>19.1</td>
<td>0.30</td>
</tr>
</tbody>
</table>

* 調査は各区の収穫盛期
* 果皮色は黒色ブドウのカラーチャートによる
* 無摘房（放任）樹

第20表　1果（花）房当たりの葉数数と収穫時期との関係（1997年）

<table>
<thead>
<tr>
<th>満開期の1果（花）房当たり葉数数</th>
<th>収穫時期（月・日）</th>
<th>合 計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.27</td>
<td>9.1</td>
</tr>
<tr>
<td>5枚区</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8枚区</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>12枚区</td>
<td>94</td>
<td>126</td>
</tr>
<tr>
<td>16枚区</td>
<td>209</td>
<td>63</td>
</tr>
<tr>
<td>20枚区</td>
<td>92</td>
<td>110</td>
</tr>
</tbody>
</table>

* 葉数（枚）
* 房数（個）
第21表 満開期の1枝当たりの葉数と着生している果房の収穫期の果皮色との関係（1997年）

<table>
<thead>
<tr>
<th>調査項目</th>
<th>1果房当り葉数5枚樹</th>
<th>1果房当り葉数8枚樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1結果枝の1房当たりの葉数（枚）</td>
<td>＜5 6～10 11～15 16～20 21＜</td>
<td>4～10 11～15 16～20 21＜</td>
</tr>
<tr>
<td>各範囲の平均果皮色</td>
<td>2.4 3.0 5.2 5.6 5.8</td>
<td>8.7 8.9 8.9 9.4</td>
</tr>
</tbody>
</table>

第22表 1果房当たり各葉数の時期別着果数（1997年）

<table>
<thead>
<tr>
<th>1果房当たり葉数</th>
<th>全着果数</th>
<th>調査</th>
<th>月</th>
<th>日</th>
<th>残果数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>910</td>
<td>9.30</td>
<td>10.5</td>
<td>10.10</td>
<td>10.15</td>
</tr>
<tr>
<td>8</td>
<td>1,003</td>
<td>5</td>
<td>22</td>
<td>127</td>
<td>165</td>
</tr>
<tr>
<td>12</td>
<td>849</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>110</td>
</tr>
<tr>
<td>16</td>
<td>981</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>913</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

第23表 1果房当たり葉数とどぶづる発生、
枯れ枝発生との関係（1997年）

<table>
<thead>
<tr>
<th>1果房当たりの葉数（枚）</th>
<th>どぶづる発生量（kg）</th>
<th>枯れ枝発生（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0*</td>
<td>32.7</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>12.4</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>4.8</td>
</tr>
<tr>
<td>16</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>5.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* 2樹の平均

第24表 1果房当たり葉数と処理翌年度の生育状況（1998年）

<table>
<thead>
<tr>
<th>1果房</th>
<th>結果枝の着果率</th>
<th>1結果枝の着花率</th>
<th>1結果枝の着果率</th>
<th>1果房当たり果粒数</th>
<th>果粒率</th>
<th>積指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(枚)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>5</td>
<td>76.3</td>
<td>24.7</td>
<td>5.8</td>
<td>1.26</td>
<td>77.6</td>
<td>9.8</td>
</tr>
<tr>
<td>8</td>
<td>82.7</td>
<td>32.2</td>
<td>7.4</td>
<td>1.53</td>
<td>85.2</td>
<td>13.3</td>
</tr>
<tr>
<td>12</td>
<td>82.6</td>
<td>37.4</td>
<td>7.8</td>
<td>1.63</td>
<td>88.1</td>
<td>25.3</td>
</tr>
<tr>
<td>16</td>
<td>88.3</td>
<td>40.2</td>
<td>8.0</td>
<td>1.69</td>
<td>90.8</td>
<td>26.9</td>
</tr>
<tr>
<td>20</td>
<td>87.0</td>
<td>39.1</td>
<td>7.8</td>
<td>1.64</td>
<td>88.8</td>
<td>26.8</td>
</tr>
</tbody>
</table>

* 展開期（4月10日）に調査 ③ 満開期（5月12日）に調査
* 実生長定規期（5月24日）に調査 ③ 無摘房（放任）樹

-24-
第25表 1果房当たり葉数と処理翌年度の果粒形質*（1998年）

<table>
<thead>
<tr>
<th>果房当り葉数 (枚)</th>
<th>粒数 (個)</th>
<th>1粒重 (g)</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含有量 (g/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 *</td>
<td>18.7</td>
<td>9.7</td>
<td>9.0</td>
<td>19.4</td>
<td>0.37</td>
</tr>
<tr>
<td>8</td>
<td>22.1</td>
<td>10.1</td>
<td>9.3</td>
<td>19.4</td>
<td>0.35</td>
</tr>
<tr>
<td>12</td>
<td>22.9</td>
<td>12.3</td>
<td>9.1</td>
<td>19.0</td>
<td>0.35</td>
</tr>
<tr>
<td>16</td>
<td>22.9</td>
<td>12.6</td>
<td>9.8</td>
<td>19.8</td>
<td>0.37</td>
</tr>
<tr>
<td>20</td>
<td>22.3</td>
<td>12.3</td>
<td>9.3</td>
<td>19.8</td>
<td>0.36</td>
</tr>
</tbody>
</table>

* 調査は各区の収穫期
** 果皮色は黒色ブドウのカラーチャートによる
*** 無摘房（放任）樹

と落葉の早晚との関係は、1果房（花）房当たりの葉数が少ないほど早く落葉した（第22表）。せん定時の豆状の発生量は、1果房（花）房当たりの葉数が多いほど多く、特に20枚区で顕著であった。また、

枯れ枝の発生状況は、1果房（花）房当たりの葉数が少ないほど多かった（第23表）。1果房当たり葉数が翌年の生長に及ぼす影響については、翌年の萌芽率ならびに着花率は、1果房当たりの葉数が少ないほど高かった（第23表）。1果房当たりの有核果粒数は12枚以上では差がないが、5、8枚区では低かった。1果房当たりの葉数と果粒形質との関係は、果皮色、糖度、酸含有率いずれの区も差がないが、1粒重は12枚以上の区に比べ、5、8枚区で軽かった（第25表）。

この結果から、ブドウ栽培系「巨峰」ウィルス無毒樹の高品質果粒生産のための1果房当たりの満開期の果数16枚程度が適切であると思われる。

5）開花期における新しょう（結果枝）の各種処理と着粒及び果粒形質との関係
（1）材料及び方法
供試樹は露地栽培の9年生根株系「巨峰」ウィルス無毒樹（無摘木）及び無毒樹（摘木）樹、各2樹を用いた。処理枝として長さ約150cmの結果母枝の

模芽で、中位から萌芽した約100cmの2果房が着穂した新しょう（結果枝）の30枝を供試した。花房は開花直前に副穂と二次花穂を除去し、房長を約8cmにした。新しょうに対する処理法・時期は下記のとおりである。調査は着粒率、有核果率を摘果期（1997年6月12日）に、1粒重、果皮色、糖度、酸含有量は収穫期（8月22日）に行った。

①ねん枝法 1997年5月13日（満開前5日・11葉期）に新しょう基部から5節目までをねん枝し、直ちに摘付けをした。
②フラスター散布 6月7日（7葉期）に濃度500倍で花穂を主体に十分量散布した。
③摘心法 5月13日（満開前5日・11葉期）に
①新しょう先端の未展開葉部を摘心し、その後に二次伸長した新しようと副しようを放置した区。
②新しょう先端の未展開葉部を摘心し、その後に二次伸長した新しょうと副しようをすべて除去した区。
③新しょう基部から8葉と7葉の間で摘心し、その後二次伸長した新しょうと副しようをすべて除去した区を設けた。

（2）結果及び考察
着粒率が最も高い区は新しょう（結果枝）を6～7葉の間で強摘心を行い、その後に二次伸長した
第26表 新しょう（結果枝）に対しての各種枝処理が着粒及び果粒形質に及ぼす影響

<table>
<thead>
<tr>
<th>枝処理法</th>
<th>着粒率（%）</th>
<th>有核果率（%）</th>
<th>1粒重（g）</th>
<th>果皮色*</th>
<th>糖度（%）</th>
<th>酸含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>損心① † 新しょう無除去（無毒）</td>
<td>23.9</td>
<td>19.3</td>
<td>12.7</td>
<td>9.2</td>
<td>18.7</td>
<td>0.26</td>
</tr>
<tr>
<td>(無毒)</td>
<td>26.1</td>
<td>23.5</td>
<td>13.2</td>
<td>7.8</td>
<td>17.2</td>
<td>0.27</td>
</tr>
<tr>
<td>損心② † 新しょう除去（無毒）</td>
<td>33.4</td>
<td>31.5</td>
<td>11.3</td>
<td>9.0</td>
<td>19.0</td>
<td>0.25</td>
</tr>
<tr>
<td>(無毒)</td>
<td>38.2</td>
<td>32.0</td>
<td>10.2</td>
<td>8.2</td>
<td>18.4</td>
<td>0.28</td>
</tr>
<tr>
<td>損心③ † 新しょう除去（無毒）</td>
<td>37.2</td>
<td>32.4</td>
<td>10.3</td>
<td>9.1</td>
<td>19.2</td>
<td>0.25</td>
</tr>
<tr>
<td>(無毒)</td>
<td>40.0</td>
<td>34.0</td>
<td>9.0</td>
<td>8.4</td>
<td>18.0</td>
<td>0.30</td>
</tr>
<tr>
<td>フラスター散布+ねん枝（無毒）</td>
<td>34.2</td>
<td>29.8</td>
<td>12.8</td>
<td>9.7</td>
<td>19.7</td>
<td>0.29</td>
</tr>
<tr>
<td>(無毒)</td>
<td>38.2</td>
<td>31.0</td>
<td>11.2</td>
<td>8.3</td>
<td>17.4</td>
<td>0.29</td>
</tr>
<tr>
<td>フラスター散布（無毒）</td>
<td>33.6</td>
<td>27.3</td>
<td>11.2</td>
<td>9.7</td>
<td>19.6</td>
<td>0.29</td>
</tr>
<tr>
<td>(無毒)</td>
<td>39.8</td>
<td>29.6</td>
<td>10.4</td>
<td>8.0</td>
<td>17.3</td>
<td>0.30</td>
</tr>
<tr>
<td>ねん枝（無毒）</td>
<td>34.6</td>
<td>28.4</td>
<td>12.0</td>
<td>9.3</td>
<td>19.6</td>
<td>0.27</td>
</tr>
<tr>
<td>(無毒)</td>
<td>37.2</td>
<td>30.0</td>
<td>11.0</td>
<td>8.1</td>
<td>18.0</td>
<td>0.28</td>
</tr>
<tr>
<td>無処理（無毒）</td>
<td>31.4</td>
<td>26.0</td>
<td>11.0</td>
<td>9.0</td>
<td>19.0</td>
<td>0.30</td>
</tr>
<tr>
<td>(無毒)</td>
<td>34.5</td>
<td>27.2</td>
<td>11.0</td>
<td>8.3</td>
<td>17.9</td>
<td>0.32</td>
</tr>
</tbody>
</table>

* 果皮色は黑色プドウのカラーチャートによる
† 新しょう先端の未展開葉部を損心し、その後に二次伸長した新しょうと副しょうを放置
‡ 新しょう先端の未展開葉部を損心し、その後に二次伸長した新しょうと副しょうをすべて除去
§ 新しょうを基部から6葉と7葉の間で損心、その後に二次伸長した新しょうと副しょうをすべて除去

新しょうと副しょうを除去した区であった。先端の未展開葉の部位から損心し、その後に二次伸長した部分を除去した区も着粒率は高くなるが、損心後二次伸長した新しょうや副しょうをそのまま放置すると無処理区より着粒率が低くなった。フラスター500倍液散布及びねん枝処理は着粒率を向上させたが、併用による着粒率のより一層の向上効果は認められなかった。1粒重は損心＋新しょう除去区及びフラスター散布区が重く、果皮色は無毒樹ではフラスター散布及びねん枝区が優れていた。しかし、両者を併用しても1粒重が更に重くなることはなかった。糖度は無毒樹ではフラスター散布及びねん枝区が高く、損心区は低かった。いずれの区も無毒樹が保毒樹に比べて各調査項目で優れていた（第26表）。損心処理は二次伸長した新しょうや副しょうの除去が必要であり、ねん枝は大変手間がかかることから、簡便なフラスター散布が省力的で普及性があるものと思われる。

6）萌芽の早晩と着粒及び果粒形質

（1）材料及び方法

調査枝としては、ブドウ品種系‘岐阜’ウイルス無毒樹（7年生植木樹）の萌芽時期が1998年4月3日と4月10日で、収穫期（8月24日）の枝が約110cmの結果枝を各区10枝用いた。調査は満開期（5月12日）と満開50日後（7月1日）の枝長、満開50日後の枝登熟期及び収穫期（8月12日）の果実形質と収穫期の葉面積指数（LAI）について行った。

（2）結果及び考察

萌芽時期が早い枝のほうが有核果率が高かった（第27表）。萌芽の早い新しょうは開花後に伸長が停止するが、萌芽の遅い新しょうは開花後も伸長を続けた（第28表）。そこで、有核果率を高めるためにには、開花後に新しょうの伸長を停止させることを必要である。そのためには前述した芽傷処理と処理部位へのメリット青2倍液散布を行い、萌芽を抑えると同時に萌芽を早める必要がある。

―26―
第27表 萌芽の早晩が着粒及び果粒形質に及ぼす影響

<table>
<thead>
<tr>
<th>萌芽時期</th>
<th>満開期間</th>
<th>有核果率</th>
<th>粒数</th>
<th>1粒重</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>(月・日)</td>
<td>(月・日)</td>
<td>(%)</td>
<td>(個)</td>
<td>(g)</td>
<td>(%)</td>
<td>(%)</td>
<td>(g/100ml)</td>
</tr>
<tr>
<td>4・3</td>
<td>5・12</td>
<td>27.4</td>
<td>25.3</td>
<td>12.5</td>
<td>10</td>
<td>19.4</td>
<td>0.325</td>
</tr>
<tr>
<td>4・10</td>
<td>5・14</td>
<td>19.2</td>
<td>16.1</td>
<td>13.1</td>
<td>10</td>
<td>19.1</td>
<td>0.387</td>
</tr>
</tbody>
</table>

* 果皮色は黒色プドウのカラーチャートによる

第28表 萌芽の早晩と新しよう伸長及び登熟率との関係

<table>
<thead>
<tr>
<th>萌芽時期</th>
<th>新しよう長</th>
<th>伸長率</th>
<th>登熟率</th>
<th>LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(月・日)</td>
<td>(cm)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>4・3</td>
<td>51.7</td>
<td>107.4</td>
<td>1.2</td>
<td>66</td>
</tr>
<tr>
<td>4・10</td>
<td>32.3</td>
<td>111.8</td>
<td>1.8</td>
<td>51</td>
</tr>
</tbody>
</table>

7）新しよう（結果枝）密度と果粒形質

（1）材料及び方法

試験用枝として、ブドウ連枝系‘巨峰’ウイルス無毒樹（7年生植株）の120～130cmの結果枝を使用し、すべて100cmで調査し、2月下旬に全芽に芽傷をつけた。試験規模は1区 1本 6反復で計6本供試した。供試した結果枝は前記の結果枝を1998年4月2日～4月5日に萌芽した枝を全芽が開花に達した時点で、各区とも等間隔に植え、他は除去した。結果枝は実生じまり決定後（5月30日）に100cmで摘取し、新しようは1芽で摘取した。試験区として、1㎡当たり結果枝数 2本、3本、4本、5本、6本、7本の6区を設けた。調査は収穫時（8月12日）のLAI、果皮色、1粒重、糖度、酸含量について行った。

（2）結果及び考察

新しよう（結果枝）密度が4～5本／㎡の区は1粒重が重く、果皮色も様々、糖度も高かった（第29表）。結果枝4～5本に各果房を着房させた場合の収量は、1果房300gとして1.2kg～1.5kg／㎡となり、10a当たり1.2～1.5tとなることから、収量の面からも結果枝密度は4～5本／㎡で十分である。

第29表 ブドウ‘巨峰’ウイルス無毒樹の新しよう密度と果粒形質との関係

<table>
<thead>
<tr>
<th>1㎡当たり結果枝数 （本）</th>
<th>1粒重 (g)</th>
<th>LAI</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量 (g/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.9</td>
<td>1.62</td>
<td>9.0</td>
<td>19.0</td>
<td>0.3178</td>
</tr>
<tr>
<td>3</td>
<td>12.0</td>
<td>1.63</td>
<td>10.0</td>
<td>19.3</td>
<td>0.3114</td>
</tr>
<tr>
<td>4</td>
<td>12.5</td>
<td>2.02</td>
<td>9.7</td>
<td>19.5</td>
<td>0.3296</td>
</tr>
<tr>
<td>5</td>
<td>12.4</td>
<td>2.39</td>
<td>9.8</td>
<td>19.0</td>
<td>0.3436</td>
</tr>
<tr>
<td>6</td>
<td>12.4</td>
<td>2.50</td>
<td>9.0</td>
<td>18.5</td>
<td>0.3972</td>
</tr>
<tr>
<td>7</td>
<td>12.2</td>
<td>2.78</td>
<td>8.3</td>
<td>18.1</td>
<td>0.3900</td>
</tr>
</tbody>
</table>

* 果皮色は黒色プドウのカラーチャートによる

8）新しようの除去時期が新しようの伸長及び果粒形質に及ぼす影響

（1）材料及び方法

供試枝はブドウ連枝系‘巨峰’ウイルス無毒樹（7年生植株）を用い、供試枝は120～130cmの結果枝を用い、すべて100cmで調査し、2月下旬に全芽に芽傷をつけ、各区6本供試した。新しようから
萌芽した新しょうの除去時期によって展葉期（1998年4月17日）除去区、満開期（5月11日）除去区、満開50日後（7月1日）除去区の3区を設け、対照として無除去除区を設定した。調査は摘粒期（6月11日）に有核果粒数、収穫期（8月12日）に1粒重、果皮色、糖度、酸含量について行った。

（2）結果及び考察
満開期除去区の主芽から萌芽した新しょうの伸長率は満開50日後に163%と最も高かった。展葉期除去区の満開50日後の枝伸長率は無除去除区と同程度であった（第30表）。有核果粒数は満開50日後除去区が最も多く、満開期除去区が最も低かった。1粒重は満開期除去区が最も重く、展葉期除去区と満開50日後除去区は同程度で、無除去除区が最も軽かった。果皮色、糖度、酸含量は差を認めなかった（第31表）。以上の結果、副芽から萌芽した新しょう

第30表 副芽から萌芽した新しょうの除去時期と主芽から萌芽した新しょうの伸長

<table>
<thead>
<tr>
<th>副芽から萌芽した新しょうの除去時期</th>
<th>調査時期</th>
<th>満開期</th>
<th>満開50日後</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸葉期（4月17日）</td>
<td>根長（mm）</td>
<td>54.4</td>
<td>157.0</td>
</tr>
<tr>
<td></td>
<td>果粒数（枚）</td>
<td>7.6</td>
<td>277</td>
</tr>
<tr>
<td>満開期（5月11日）</td>
<td>根長（mm）</td>
<td>56.6</td>
<td>109.1</td>
</tr>
<tr>
<td></td>
<td>果粒数（枚）</td>
<td>7.6</td>
<td>193</td>
</tr>
<tr>
<td>満開50日後（7月1日）</td>
<td>根長（mm）</td>
<td>50.3</td>
<td>101.1</td>
</tr>
<tr>
<td></td>
<td>果粒数（枚）</td>
<td>7.6</td>
<td>201</td>
</tr>
<tr>
<td>無除去除区（主芽）</td>
<td>根長（mm）</td>
<td>51.0</td>
<td>103.7</td>
</tr>
<tr>
<td></td>
<td>果粒数（枚）</td>
<td>7.6</td>
<td>203</td>
</tr>
<tr>
<td>（副芽）</td>
<td>根長（mm）</td>
<td>19.0</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>果粒数（枚）</td>
<td>5.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* 4月17日の果皮及び枝（新しょう）長に対する増果数及枝（新しょう）伸長率
* 5月11日の果皮及び枝（新しょう）長に対する増果数及枝（新しょう）伸長率

第31表 副芽から萌芽した新しょうの除去時期と主芽から萌芽した新しょうに着果した果房の形質の比較

<table>
<thead>
<tr>
<th>除去時期</th>
<th>有核果粒数（個）</th>
<th>有核果粒率（％）</th>
<th>1房の粒数（個）</th>
<th>1粒重（g）</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量（g/100ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸葉期（4月17日）</td>
<td>23.2</td>
<td>19.3</td>
<td>20</td>
<td>12.2</td>
<td>10.0</td>
<td>18.6</td>
<td>0.4872</td>
</tr>
<tr>
<td>満開期（5月11日）</td>
<td>15.2</td>
<td>12.7</td>
<td>15</td>
<td>13.3</td>
<td>10.0</td>
<td>18.1</td>
<td>0.5536</td>
</tr>
<tr>
<td>満開50日後（7月1日）</td>
<td>31.0</td>
<td>25.8</td>
<td>20</td>
<td>11.9</td>
<td>10.0</td>
<td>18.9</td>
<td>0.5483</td>
</tr>
<tr>
<td>無除去除区（主芽）</td>
<td>30.4</td>
<td>25.3</td>
<td>20</td>
<td>10.7</td>
<td>10.0</td>
<td>18.3</td>
<td>0.5360</td>
</tr>
<tr>
<td>（副芽）</td>
<td>29.3</td>
<td>24.4</td>
<td>20</td>
<td>10.9</td>
<td>9.1</td>
<td>17.8</td>
<td>0.5852</td>
</tr>
</tbody>
</table>

* 副芽から萌芽した新しょうの除去時期
* 果皮色は果色プドウのカラーチャートによる

よう除去は30粒を着粒させる場合は、展葉期除去区の1粒重が最も重く最も多であるが、20粒の房につく場合は展葉期除去では有核粒数が不足するため、満開50日後除去がよいと思われる。なお、無除去除区で副芽から萌芽した新しょうに着果させなかった場合の主芽の果房形質については不明である。

9）新しょう誘引が樹体及び果粒特性に及ぼす影響

（1）材料及び方法
供試樹は徳利栽培のブドウサンズ系「峰」ウイルス無毒樹（9年生植木樹・有核栽培）、1区1主枝3処理4反復、計3樹を用いた。処理区は開花初期（1997年5月15日）にI：全新しょうを誘引、II：25cm以下及び無花（果）房新しょうは放任、他は誘引、III：放任の3区を設定した。調査は各区とも開花初期（5月15日）と満開70日後（7月28日）に全
新しょう長、全業数、葉面積、葉重、相対度を、L と Aを測定した。葉面積は樹木方式、即ち開花時の枝長が50cm以上の枝30本について処理基部から7枚目の葉、計30枚の縦径を測定し、次の式で算出した。

\[y = 19.8x - 97.1 \] （開花時）, \[y = 24.3x - 135.2 \] （満開日後）, \[x \text{は縦径} \]

葉重は葉長調査枝と同一枝を用い、開花初期には基部から5枚目の葉、満開日後には基部から9枚目の葉を各調査日に30葉を採取し、主脈を挟んだ両部位を1辺5cmの正方形に切り取り、計60個の生重を測定し、その平均で示した。また、収穫時（8月12日）には1粒重、糖度、酸含量、果皮色及び収穫盛期を調査した。

（2）結果及考察

25cm以下及び無花（果）房新しょう放任区（Ⅱ区）は全新しょうを誘引した区（Ⅰ区）に比べ、葉

<table>
<thead>
<tr>
<th>区</th>
<th>新しょう</th>
<th>全新しょう長</th>
<th>葉数</th>
<th>葉面積</th>
<th>葉重</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>362</td>
<td>8,724</td>
<td>15,204</td>
<td>1.74</td>
<td>2,448</td>
</tr>
<tr>
<td></td>
<td>(24.1)</td>
<td>(42.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅱ</td>
<td>332</td>
<td>9,396</td>
<td>16,003</td>
<td>1.70</td>
<td>2,337</td>
</tr>
<tr>
<td></td>
<td>(28.3)</td>
<td>(48.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅲ</td>
<td>345</td>
<td>9,536</td>
<td>27,094</td>
<td>2.84</td>
<td>2,361</td>
</tr>
<tr>
<td></td>
<td>(27.6)</td>
<td>(78.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ①：開花初期（5月15日）、②開花後70日（7月28日）
* Ⅰ：全新しょうを誘引、Ⅱ：25cm以下及び無花（果）房新しょうは放任し、他は誘引、Ⅲ：放任
* 内数字は平均新しょう長

（30）萌芽期のメリット青剤散布が樹体及び果粒肥大に及ぼす影響

<table>
<thead>
<tr>
<th>区</th>
<th>相対度</th>
<th>葉面積指数（LAI）</th>
<th>果粒色</th>
<th>収穫盛期</th>
<th>1粒重</th>
<th>糖度</th>
<th>酸度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>51.0</td>
<td>42.2 0.83</td>
<td>1.44 2.07 1.43</td>
<td>8.9</td>
<td>8.27</td>
<td>11.8</td>
<td>19.4</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>57.2</td>
<td>51.4 0.90</td>
<td>0.93 1.33 1.45</td>
<td>10.0</td>
<td>8.27</td>
<td>13.0</td>
<td>20.3</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>54.6</td>
<td>39.2 0.72</td>
<td>1.08 2.93 2.71</td>
<td>8.1 9.4</td>
<td>10.6</td>
<td>18.7</td>
<td>0.31</td>
</tr>
</tbody>
</table>

* ①：開花初期（5月15日）、②開花後70日（7月28日）
* Ⅰ：全新しょうを誘引、Ⅱ：25cm以下及び無花（果）房は放任、Ⅲ：放任

（1）材料及び方法

供試樹はプドウ品種系‘巨峰’ウイルス無毒樹（根域制限13年生挿木樹）、1区1樹を用い、供試枝として萌芽期の1998年4月2日に萌芽した新しょうを各40本用いた。供試枝は葉面散布剤であるメリット青剤 500倍を用い、電動式噴霧器で各時期に新しょうを主体に十分量を散布した。新しょう
第42表 メリット青齢の散布時期が新しよう伸長及び葉面積指数に及ぼす影響

<table>
<thead>
<tr>
<th>区</th>
<th>散布時期(月・日)</th>
<th>新しよう長(cm)</th>
<th>伸び率(%)</th>
<th>葉面積指数(LAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4-61421*27</td>
<td>52.7 58.0 68.5</td>
<td>1.1 1.3</td>
<td>1.34 1.65 2.04</td>
</tr>
<tr>
<td></td>
<td>満開期① 50日後② 70日後③</td>
<td>40.7 57.0 78.8</td>
<td>1.4 2.0</td>
<td>1.36 1.84 2.36</td>
</tr>
<tr>
<td>III</td>
<td>- ④ 0 0</td>
<td>41.9 62.9 106.9</td>
<td>1.5 2.6</td>
<td>1.28 2.01 2.95</td>
</tr>
<tr>
<td>IV</td>
<td>- - 0 0</td>
<td>36.3 40.0 52.0</td>
<td>1.1 1.4</td>
<td>1.12 1.52 2.09</td>
</tr>
</tbody>
</table>

*展業期，"7〜8枚期，"9〜10枚期，"10〜11枚期
注）メリット青齢の成分：葉全重量7.0%，水溶性リン酸5.0%，水溶性カリ3.0%
水溶性マンガン0.1%，水溶性ほう素0.2%

第43表 メリット青齢の散布時期が着粒及び果粒形質に及ぼす影響

<table>
<thead>
<tr>
<th>区</th>
<th>散布時期(月・日)</th>
<th>有核粒数 (個)</th>
<th>有核粒率 (%)</th>
<th>1粒重 (g)</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量 (g/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4-61421*27</td>
<td>29.1 24.3</td>
<td>13.2 10.0</td>
<td>20.5</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>- 0 0</td>
<td>20.7 17.3</td>
<td>12.2 9.8</td>
<td>19.5</td>
<td>0.367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>- 0 0</td>
<td>18.6 15.5</td>
<td>12.6 9.5</td>
<td>19.0</td>
<td>0.384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>- - 0 0</td>
<td>26.3 21.9</td>
<td>11.9 9.7</td>
<td>19.5</td>
<td>0.341</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 黒色ブドウのカラーチャートによる
**展業期，"7〜8枚期，"9〜10枚期，"10〜11枚期

3. 着粒後の新しよう（枝）管理による樹勢安定と果粒形質の向上

ブドウ‘巨峰’ウィルス無毒樹は保樹樹に比べ樹勢が旺盛で、果粒肥大期にも新しょうの伸長が著しいため果粒への養分の供給が少なく、果粒肥大が阻害されている。また、収穫後の二次伸長などが結果母枝枝条枝の発生を阻害し、翌年の萌芽率や着穗率の低下をきたしていると云われている。そこで、着粒後及び収穫後の養分を効果的に利用して、処理によって果粒形質や翌年の萌芽率、着穗率や果粒形質を向上させる新しょう法を検討した。

1）新しょう摘心後の副しよう処理が果粒形質及び枝葉部に及ぼす影響

（1）材料及び方法

供試枝として、開花5日前（1989年4月26日）にねん枝し、開花70日後（7月21日）に長さが105〜110cmで、2房正处于個新しょうをI区当たり10本供試した。処理方法はI：100cmで摘心、副しょうはすべて2芽が摘心し、副しょうからの新しょうはすべて除去した。II：100cmで摘心、副しょうはす
べて除去した。III：100cmで摘心、副しよう無処理。た（第34表）。このように、果粒肥大のためにはある
IV：完全無処理。摘心は収穫期（8月
12日）に1粒重、果皮色、糖度、酸含有量を測定した。めには前述したように新しよう以外に副しようも有
効に利用し、立体的に果を配置する必要があるもの
（2）結果及び考察
新しよう（結果枝）を摘心し、副しようと2芽摘心
心した区は1粒重が最も重く、果粒肥大も認められ

第34表 新しよう摘心後の副しよう処理と果粒形質

<table>
<thead>
<tr>
<th>区</th>
<th>副しよう処理</th>
<th>1房の粒数（個）</th>
<th>1粒重（g）</th>
<th>果皮色（g/100ml）</th>
<th>酸含有量（mm）</th>
<th>枝基部径（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>摘心・副しよう 2芽摘心</td>
<td>20</td>
<td>13.2</td>
<td>10.0</td>
<td>19.0</td>
<td>0.3872</td>
</tr>
<tr>
<td>II</td>
<td>摘心・副しよう完全除去</td>
<td>20</td>
<td>11.8</td>
<td>10.0</td>
<td>18.2</td>
<td>0.4430</td>
</tr>
<tr>
<td>III</td>
<td>摘心・副しよう無処理</td>
<td>20</td>
<td>12.3</td>
<td>9.2</td>
<td>18.7</td>
<td>0.4263</td>
</tr>
<tr>
<td>IV</td>
<td>完全無処理</td>
<td>20</td>
<td>11.0</td>
<td>9.0</td>
<td>18.1</td>
<td>0.4083</td>
</tr>
</tbody>
</table>

*果皮色は黒色ブドウのカラーチャートによる
**冬季せん定時の枝基部径

2）着粒後の新しよう管理が当年の果粒品質並びに翌年の着穂、果粒形質に及ぼす影響

（1）材料及び方法
処理当年の供試樹は露地栽培のブドウ帯崎系‘巨
峰’ウイルス無毒樹 4年生（播木樹・有袋栽培）で
長さ約 150cmの新しようを 1区 5本 2反復の10本
3処理で計30本供試した。処理は1996年 7月16日
に行い、処理区として①新しょうの12節より先端を播
からはずし下垂させ、下垂部位から発生する新しけ
は除去する区、②13節と13節の間で夏季せんを定し
新しようはすべて除去する区、③無処理区の 3区を
設定した。調査は、1996年 7月16日に処理すると同
時に新しょう長を測定し、8月28日に収穫時の新し
ょう長と果粒形質を測定した。
処理翌年の供試樹は露地栽培の帯崎系‘巨峰’ウ
イルス無毒樹 5年生無毒樹（播木樹・有袋栽培）で
前年度に供試した結果母枝すなわち、1区 5本 2反
復10本の 3処理区、計40本から発芽した新しょう
（結果枝）を用いた。粒数は摘粒期に1房当たり20
粒とした。調査方法については、萌芽率は1997年 4
月 7日に調べ、平均結果枝長は 5月17日（開院期）
に全調査枝の全着果枝長を測定し、その平均で示し
た。着粒率は 5月15日に新しょうの着果有無を調
査し、その割合で示した。1粒重は収穂期に房重／
1房当たりの粒数で示した。果皮色は収穂期にカラ
ーチャート指数で示した。糖度及び酸含有量は房の先端
2粒、中央 1粒、肩部 2粒の計 5粒を搾汁して測定
した。枝の登熟率は 8月25日（収穫時）に新しょう
の褐変変形割合を調査した。

（2）結果及び考察
処理当年の果粒品質については12節と13節の間で
夏季せん定する区が最も果粒が肥大した。果皮色は
新しよう処理区が無処理区に比べ向上するが、処理
法の違いでは差が認められなかった。収穫時の枝の
登熟率は両処理区とも無処理区に比べ高かったが、
処理法の違いでは差はなかった。糖度及び酸含有量は
これらの新しよう処理では影響がないと思われ（第
35表）。翌年の生長、果粒品質に及ぼす影響につい
ては、処理区が無処理区より萌芽率、着粒率、有核
粒率、糖度が高かった。しかし、無処理区の 1粒重
は有核粒率が低いことから、着粒数が少ないために
重かった。平均結果枝長は無処理区に比べ、12節と
13節の間でせん定した区が短かった。酸含有量はこれ
らの処理では影響がなかった。端芽の枝長について、端芽の枝長が長くなった（第36表）。前年枝の年齢が高い結果母枝は、端芽の枝長が短い、着実に、有核率、有核粒率、果皮率、果皮色、果皮糖度、果皮酸含量、枝の登熟率を減少させた（第36表）。前年枝の年齢が高い結果母枝は、端芽の枝長が短い、着実に、有核率、有核粒率、果皮率、果皮色、果皮糖度、果皮酸含量、枝の登熟率を減少させた（第36表）。

第35表 果樹栽培大期の新しょう管理が新しょう枝長と果皮品質に及ぼす影響

<table>
<thead>
<tr>
<th>新しょう処理法</th>
<th>新しょう枝長</th>
<th>伸長程度</th>
<th>1粒果皮</th>
<th>果皮糖度</th>
<th>果皮酸含量</th>
<th>枝の登熟率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>処理時(cm)</td>
<td>収穫時(cm)</td>
<td>②-① (%)</td>
<td>②/① (%)</td>
<td>重色 (g)</td>
<td>(g/100ml)%</td>
</tr>
<tr>
<td>12節より先端部を下垂</td>
<td>147.5</td>
<td>172.5</td>
<td>24.5</td>
<td>1.17</td>
<td>12.8</td>
<td>10</td>
</tr>
<tr>
<td>12節と13節の間でせん定</td>
<td>107.5</td>
<td>116.4</td>
<td>8.9</td>
<td>1.08</td>
<td>13.2</td>
<td>10</td>
</tr>
<tr>
<td>無処理</td>
<td>151.3</td>
<td>231.4</td>
<td>80.1</td>
<td>1.53</td>
<td>11.5</td>
<td>9.2</td>
</tr>
</tbody>
</table>

第36表 前年度の新しょう処理が翌年の生育と果皮品質に及ぼす影響

<table>
<thead>
<tr>
<th>前年度の新しょう処理</th>
<th>萌芽率</th>
<th>果皮長</th>
<th>有核率</th>
<th>果皮糖度</th>
<th>果皮酸含量</th>
<th>先端枝長</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理時(cm)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(g/100ml)%</td>
<td>(cm)</td>
</tr>
<tr>
<td>12節より先端部を下垂</td>
<td>77.4</td>
<td>43.1</td>
<td>96.0</td>
<td>37.5</td>
<td>12.4</td>
<td>9.6</td>
</tr>
<tr>
<td>12節と13節の間でせん定</td>
<td>69.6</td>
<td>37.3</td>
<td>97.4</td>
<td>35.8</td>
<td>11.8</td>
<td>8.7</td>
</tr>
<tr>
<td>無処理</td>
<td>66.5</td>
<td>43.3</td>
<td>72.4</td>
<td>24.2</td>
<td>13.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

糖度は高かった（第37表）。処理区の翌年の萌芽率、枝長、果皮長、有核粒率が高く、1粒重が重いのは、無処理区に比べ枝の登熟率が高かった。枝が長く、果実が多く、貯蔵性の良い、枝が適切に表現される。12節より先端部を下垂させた区が12節と13節の間でせん定した区に比較して枝の登熟率が高かった（第37表）。

第37表 前年枝の収穫時における登熟程度が萌芽及び果皮形質に及ぼす影響

<table>
<thead>
<tr>
<th>枝の登熟率</th>
<th>萌芽率</th>
<th>平均果皮長</th>
<th>果皮粒長</th>
<th>有核率</th>
<th>果皮糖度</th>
<th>果皮酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>(%)</td>
<td>(cm)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(g/100ml)%</td>
</tr>
<tr>
<td>90</td>
<td>82.4</td>
<td>46.6</td>
<td>97.4</td>
<td>38.2</td>
<td>12.3</td>
<td>9.4</td>
</tr>
<tr>
<td>80</td>
<td>79.6</td>
<td>51.2</td>
<td>94.2</td>
<td>37.2</td>
<td>12.3</td>
<td>9.1</td>
</tr>
<tr>
<td>70</td>
<td>61.4</td>
<td>33.4</td>
<td>85.6</td>
<td>30.4</td>
<td>12.6</td>
<td>9.3</td>
</tr>
<tr>
<td>60</td>
<td>43.5</td>
<td>30.6</td>
<td>77.4</td>
<td>25.6</td>
<td>13.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>

3）前年度の秋季に二次伸長した枝を結果枝にした場合の樹木生育

（1）材料及び方法

供試樹として、幅180×180cm、土量1㎥の圃場内で育成したブドウ‘巨峰’ウイルス無病樹（9年生）を用い、1997年の収穫直後（8月25日）にチッカ素成分を2kg/10a施用した樹、収穫直後（9月14日）にチッカ素成分を6kg/10a施用した樹を各1樹設定した。せん定処理は全施設処理樹において短しょうせん定区（第1主枝、第4主枝）と長しょうせん定区（第2主枝、第3主枝）を設定し、主枝単位で全て処理した。短しょうせん定区は1998年1月17日から2月20日を残してすべて除芽し、副芽は実定まり判定後に2芽上させてせん定した。長しょうせん定は1995年1月17日にすべて先端から1/3をせん定した。試験区はI－短しょうせん定区で基準施肥、二次伸長なし枝区。II－短しょうせん定区で基準3倍
量・速施肥、二次伸長有り枝区。Ⅲ＝長しょうせん定で基準施肥、二次伸長なし枝区。Ⅳ＝長しょうせん定で基準3倍施肥、二次伸長有り枝区。新しょう処理については短しょうせん定区は全新しょうを4月20日にねん枝し、満開70日目に新しょう長100cmまで摘みした。下ほうはすべて2芽を切除し、副しょうからの新しょうはすべて切除した。長しょうせん定区は4月20日に長さ40cm以上の新しょうをねん枝した。

（2）結果及び考察

前年の秋に二次伸長した区は短しょう、長しょうのいずれのせん定法ともに萌芽が遅かった（第38表）。前年の秋に二次伸長した区は二次伸長しなかった区に比べ満開期の平均着果枝長が短く、満開70日目の平均着果枝長は長かった。有核果率は二次伸長なし区が二次伸長有り区に比べ高く、特に短しょうせん定の場合はその差が顕著であった（第39表）。果粒形質については短しょうせん定では二次伸長なし区が1粒重、果皮色や糖度が優れていたが、長しょうせん定では二次伸長の有無で果粒形質に差がみられなかった（第40表）。

以上の結果、二次伸長していない枝を結果母枝にした場合は二次伸長した枝の結果母枝に比べ萌芽期が早く、着穂率、有核果粒率が高いことが明らかとなった。また、翌年の果粒形質については、短しょうせん定の場合は二次伸長の有無が大きく影響しており、二次伸長していない枝を結果母枝にした区の1粒重が重く、糖度が高かった。このことは、枝の二次伸長による内化養分消費、収穫後の貯藏養分の積蓄が少なかったためと考えられる。

<table>
<thead>
<tr>
<th>試験区</th>
<th>萌芽期</th>
<th>展業期</th>
<th>開花期</th>
<th>収穫期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>初期</td>
<td>盛期</td>
<td>終期</td>
<td>初期</td>
</tr>
<tr>
<td>短しょうせん定</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I（二次伸長なし）</td>
<td>4 4 4 7</td>
<td>5 7 5 8 5 10</td>
<td>8 5 8 10 8 12</td>
<td></td>
</tr>
<tr>
<td>II（二次伸長有り）</td>
<td>4 7 4 9</td>
<td>5 8 5 10 5 15</td>
<td>8 5 8 12 8 17</td>
<td></td>
</tr>
<tr>
<td>長しょうせん定</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III（二次伸長なし）</td>
<td>4 4 4 10</td>
<td>5 7 5 12 5 16</td>
<td>8 5 8 12 8 26</td>
<td></td>
</tr>
<tr>
<td>IV（二次伸長有り）</td>
<td>4 9 4 13</td>
<td>5 9 5 13 5 20</td>
<td>8 5 8 12 8 26</td>
<td></td>
</tr>
</tbody>
</table>

第38表 せん定法、二次伸長の有無と翌年の樹体生育との関係（月・日）

<table>
<thead>
<tr>
<th>区</th>
<th>満開期の平均着果 (cm)</th>
<th>平均着果枝長 (cm)</th>
<th>平均着果数</th>
<th>1枝当たりの有核果数 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>82.9</td>
<td>94.5</td>
<td>80.6</td>
<td>91.5</td>
</tr>
<tr>
<td>II</td>
<td>74.1</td>
<td>93.8</td>
<td>74.0</td>
<td>100.7</td>
</tr>
<tr>
<td>III</td>
<td>42.2</td>
<td>86.0</td>
<td>34.0</td>
<td>45.8</td>
</tr>
<tr>
<td>IV</td>
<td>40.6</td>
<td>87.2</td>
<td>31.4</td>
<td>49.6</td>
</tr>
</tbody>
</table>

1 1房当たりの有核果数
2 1房当たりの有核果率
第40表 せん定法，二次伸長の有無と翌年の果粒形質との関係

<table>
<thead>
<tr>
<th>区</th>
<th>1房当たり</th>
<th>1粒重</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>332.6</td>
<td>13.2</td>
<td>9.8</td>
<td>20.6</td>
<td>0.3178</td>
</tr>
<tr>
<td>II</td>
<td>276.0</td>
<td>12.8</td>
<td>9.5</td>
<td>19.0</td>
<td>0.3105</td>
</tr>
<tr>
<td>III</td>
<td>293.9</td>
<td>11.9</td>
<td>9.7</td>
<td>20.5</td>
<td>0.3097</td>
</tr>
<tr>
<td>IV</td>
<td>277.3</td>
<td>11.8</td>
<td>9.8</td>
<td>20.1</td>
<td>0.3104</td>
</tr>
</tbody>
</table>

* 果皮色は黑色ブドウのカラーチャートによる

４）収穫後の新しょうの二次伸び抑制剤散布による結果母枝の充実法の検討

（１）材料及び方法
ブドウ田崎系‘巨峰’ウイルス無毒樹（5年生）の収穫期の長さが約200cmの新しょうを作製した。二次伸び抑制剤としてエルノーレ剤200倍液を用い、収穫5日後（1996年9月2日）、15日後（9月1日）40日後（10月7日）の各時期に電動式噴霧器で新しょう主体に十分量散布した。調査は枝長を収穫後（1996年9月2日）、各散布時とせん定時（1997年1月20日）に、節間長、枝径はせん定時に行った。
エルノーレ剤散布が翌年の生育に及ぼす影響については、収穫5日後にエルノーレ剤200倍を散布した枝と無散布枝の枝の伸長，果粒形質を比較した。調査は萌芽期（1997年4月15日）に萌芽率を、開花前（5月2日）に結果枝数と着穂率を、収穫期（8月25日）に先端芽から萌芽した新しょうの長さと果粒形質の測定を行った。

（２）結果及び考察
収穫5日後までのエルノーレ剤散布は収穫後の枝の伸長を抑える、散布枝の枝節間長が短く、枝断面形が丸いことから枝充実の効果があるものと考えられる（第41表）。収穫5日後にエルノーレ剤を散布した枝を結果母枝にした場合、翌年の結果枝長は短くなり、萌芽率と着穂率、有核果粒率、糖度などが高くなった（第42表）。このように、エルノーレ剤200倍液を散布後15日までに散布すると収穫後の枝の二次伸長が押さえられ枝が充実し、翌年の樹体及び果树形質が向上することが明らかとなった。しかし、エルノーレ剤の連年使用の影響については不明であり今後検討が必要である。

第41表 収穫後のエルノーレ剤散布による結果母枝の充実促進効果

<table>
<thead>
<tr>
<th>散布時期</th>
<th>収穫後①</th>
<th>収穫後②</th>
<th>せん定時③</th>
<th>枝長 (cm)</th>
<th>枝伸長 (cm)</th>
<th>節間長 (cm)</th>
<th>枝径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>収穫5日後</td>
<td>212.4</td>
<td>-</td>
<td>236.2</td>
<td>23.8</td>
<td>1.11</td>
<td>-</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1×9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>収穫15日後</td>
<td>198.5</td>
<td>214.3</td>
<td>239.4</td>
<td>40.9</td>
<td>1.20</td>
<td>25.1</td>
<td>1.12</td>
</tr>
<tr>
<td>収穫40日後</td>
<td>190.7</td>
<td>356.5</td>
<td>487.5</td>
<td>296.8</td>
<td>2.56</td>
<td>144.0</td>
<td>1.42</td>
</tr>
<tr>
<td>無散布布</td>
<td>206.5</td>
<td>-</td>
<td>486.5</td>
<td>280.0</td>
<td>2.36</td>
<td>-</td>
<td>6.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.4×14.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第42表 エルノーレ剤散布が翌年の生育に及ぼす影響

<table>
<thead>
<tr>
<th>処理</th>
<th>萌芽率 (％)</th>
<th>平均結着数</th>
<th>着穂率 (％)</th>
<th>有核果粒率 (％)</th>
<th>果粒重 (g)</th>
<th>果皮色</th>
<th>糖度 (％)</th>
<th>酸含量 (g/100ml)</th>
<th>先端芽長 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>エルノーレ剤 200倍散布</td>
<td>73.8</td>
<td>35.5</td>
<td>91.5</td>
<td>38.3</td>
<td>12.3</td>
<td>9.2</td>
<td>19.0</td>
<td>0.24</td>
<td>86</td>
</tr>
<tr>
<td>無処理</td>
<td>56.5</td>
<td>43.3</td>
<td>72.4</td>
<td>24.2</td>
<td>13.2</td>
<td>8.0</td>
<td>18.7</td>
<td>0.25</td>
<td>138</td>
</tr>
</tbody>
</table>

—34—
5）芽かきと夏季せん定が果粒生産に及ぼす影響

（1）材料及び方法

供試樹は地栽培の浜崎系‘巨峰’ウイルス無毒樹（5年生桜木樹・有築栽培）2樹を用いた。

実験区は萌芽期芽かき区、6月間引きせん定区、9月間引きせん定区と無処理区の4区を設定した。1
樹に4区処理を2回行った。処理方法については萌芽期
芽かき区は上収及び先端芽を主体に1996年～1998年
の毎年4月に4本／m²になるように除去した。6月
間引きせん定区は1996年～1998年の毎年6月に、長
さ10cm以上の未着果果の新ショウを主体に新ショウの10％を基部から間引きせん定した。9月間引き
せん定区は1996年～1998年に毎年9月に、長さ200
cm以上の新ショウを主体に新ショウの15％を基部
から間引きせん定した。冬季せん定は通常通り行った。

調査は1997年と1998年の萌芽期に萌芽率を、19
年の収穫期に1粒重、果皮色、糖度、酸含量を、19
97年と1998年の開花直前の枝長及び収穫直後の枝
長について実施した。

（2）結果及び考察

萌芽期芽かき区は6月、9月間引きせん定区や無
処理区に比べ萌芽率が高く、新ショウ長が長く、果
粒が大きく、果皮色が薄く、糖度が高く、酸含量が
低かった。6月間引きせん定区は無処理区に比べ

<table>
<thead>
<tr>
<th>処理</th>
<th>開花前①</th>
<th>収穫直後②</th>
<th>①-② (g)</th>
<th>糖度</th>
<th>酸含量 (g/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>芽かき 4月</td>
<td>90.1</td>
<td>54.6</td>
<td>92.3</td>
<td>37.7</td>
<td>12.4</td>
</tr>
<tr>
<td>間引き 6月</td>
<td>90.6</td>
<td>38.2</td>
<td>46.0</td>
<td>7.8</td>
<td>10.3</td>
</tr>
<tr>
<td>間引き 9月</td>
<td>89.3</td>
<td>48.6</td>
<td>71.2</td>
<td>22.6</td>
<td>11.8</td>
</tr>
<tr>
<td>無処理</td>
<td>83.0</td>
<td>44.2</td>
<td>65.0</td>
<td>18.8</td>
<td>11.0</td>
</tr>
</tbody>
</table>

第44表 芽かき及び新ショウの間引きせん定をした場合の樹体及び果粒形質（1997年）

<table>
<thead>
<tr>
<th>処理</th>
<th>萌芽率 (%)</th>
<th>有核果率 (%)</th>
<th>新ショウ長</th>
<th>1粒重 (g)</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量 (g/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>芽かき 4月</td>
<td>90.6</td>
<td>59.0</td>
<td>107.3</td>
<td>48.3</td>
<td>13.1</td>
<td>9.4</td>
<td>19.3</td>
</tr>
<tr>
<td>間引き 6月</td>
<td>60.0</td>
<td>20.3</td>
<td>55.0</td>
<td>24.7</td>
<td>11.3</td>
<td>8.2</td>
<td>18.0</td>
</tr>
<tr>
<td>間引き 9月</td>
<td>84.3</td>
<td>37.5</td>
<td>68.3</td>
<td>30.8</td>
<td>11.8</td>
<td>9.2</td>
<td>18.5</td>
</tr>
<tr>
<td>無処理</td>
<td>77.2</td>
<td>48.0</td>
<td>88.3</td>
<td>40.3</td>
<td>12.1</td>
<td>9.1</td>
<td>18.6</td>
</tr>
</tbody>
</table>

第45表 芽かき及び間引きせん定の連年処理が樹体及び果粒形質に及ぼす影響（1998）
毎年基部から間引きせん定した。
1996年〜1997年に毎年9月に長さ200cm以上の未着果要新芽を主体に、全新芽の15％を毎年基部から間引きせん定した。
上芽及び先端芽を主体に1996年〜1998年4月に毎年、4本/㎡を残して除芽

べ、1996年及び1997年ではほぼ同等であるが、1998年では、有核果率は高いが果芽率が低く、果粒が小さく、果皮色が劣り、糖度が低く、酸含量が高いため。9月の間引きせん定区は無処理区に比べ果芽率、有核果率は高いが新芽長、1粒重、果皮色、糖度は同程度であった（第43、44、45表）。

以上の結果から6月の間引きせん定を連年行うと果実形質が低下することから、ウイルス無毒樹の樹体管理は芽かき主体で9月の間引きせん定を補完的に行うのがよいと思われる。

4. プドウ‘巨峰’ウイルス無毒樹の栽培に適した台木品種の選抜

ウイルス無毒樹は一般的に樹勢が強く、花が盛るとか、有核粒の着粒率が低いなどと言われている。また、長崎県のプドウ‘巨峰’に使われてきた台木品種‘5B’は生産現場では無毒樹の台木に用いると樹勢が強すぎるため、着色が成りとか着粒率が低いなどと言われている。そこで、高品質安定多収を目的としたプドウ品種系‘巨峰’ウイルス無毒樹に適した台木品種を選抜する。

1）各種台木品種の採木苗生育の品種間差異

（1）材料及び方法

供試樹は茎頂培養で作出したプドウ台木品種‘グロワール’、‘S O 4’、‘5 B B’、‘3 3 0 9’、‘1 2 0 2 7’と対照のプドウ品種系‘巨峰’の採木苗を1996年2月に1品種につき30cmの鉢に各3本の7鉢、計21本を植え込み、1996年5月に21本中6本（2鉢）にリーフロールウイルス、ファンリーフウイルス、フレックを接種して保毒樹とし、残り15本（5鉢）を無毒樹とした。1997年2月にその接種苗及び無接種苗の枝長と幹径を測定し、生育状況を比較した。

（2）結果及び考察

台木品種の採木苗の生育状況と一般に云われている台木樹の発芽成育との間には明瞭な傾向を認めなかった。しかし、いずれの品種でもウイルス無毒がウイルス保毒苗より生育旺盛であった（第46表）。台木品種のウイルス無毒苗が生育旺盛であること、ウイルス無毒接木苗の果粒肥大、着色に影響しているものと思われる。

<table>
<thead>
<tr>
<th>台木品種名</th>
<th>わい化度</th>
<th>保毒樹（cm）</th>
<th>保毒樹（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>無毒樹（cm）</td>
<td>幹径（mm）</td>
<td>無毒樹（cm）</td>
<td>幹径（mm）</td>
</tr>
<tr>
<td>グロワール</td>
<td>5</td>
<td>176.5</td>
<td>4.3</td>
</tr>
<tr>
<td>S O 4</td>
<td>4</td>
<td>175.9</td>
<td>4.2</td>
</tr>
<tr>
<td>5 B B</td>
<td>3</td>
<td>221.9</td>
<td>4.2</td>
</tr>
<tr>
<td>3 3 0 9</td>
<td>2</td>
<td>224.6</td>
<td>4.8</td>
</tr>
<tr>
<td>1 2 0 2 7</td>
<td>1</td>
<td>227.9</td>
<td>5.2</td>
</tr>
<tr>
<td>品種系巨峰</td>
<td>130.4</td>
<td>5.4</td>
<td>157.7</td>
</tr>
</tbody>
</table>

2）プドウウイルス無毒台木に接ぎ木した

品種系‘巨峰’ウイルス無毒樹の生育及び果粒形質

（1）材料及び方法

供試樹として茎頂培養方法で作出したウイルス無毒のプドウ品種系‘巨峰’を樹木にし、同様にして無毒化したプドウ台木‘グロワール’、‘S O 4’、‘5 B B’、‘3 3 0 9’、‘1 2 0 2 7’に
緑枝接ぎ木した樹に用いた。対照としてブドウ浜崎系「巨峰」の共台、並びに同様に植えた木樹を用いた。接枝は、台木用品種及び浜崎系「巨峰」を前試験と同様にして1品種につき30cm根に各3本の7株、計21本を植え込み、2年生植えし木樹に育て、その地際部から15〜25cmの部位に1997年 6月15日〜 6月31日に植えに行行った。供試試料として各品種とも長さ80〜85cm、幹径 4.1mmの苗を 6本選抜し、1998年 2月に地際部から50cmでせんを定して苗台に植えた。植栽状況は 1区 2樹の 3反復とし、間隔幅1.5m×2mで根高30cmに植え込み、4〜7月の間はビニール被覆栽培した。生育状態は定植 1年後の1999年 2月、2年後の2000年 2月 3年後の2001年 1月に、実調査は収穫時の1999年 9月と2000年 9月に行った。

（2）結果及び考察

接枝樹の生育は定植 1年後の1998年 2月の調査では浜崎系挿木樹が最も劣り、次いで浜崎系共台で、他の品種については台木のわい化度が低くなるに従って旺盛になった。枝の節間長は「1202」が最も長く、他の品種はわい化度が高くなるに従って短くなった（第47表）。定植 3年後の2001年 1月の調査では浜崎系挿木樹、浜崎系共台、ブドウ系が根に台木の差はないが、他の台木品種接木樹に比べてわい化度が高かった。他の台木品種接木樹はわい化度が高いほど生育が旺盛であった（第48表）。果粒形質については1999年 9月の調査では「グルーワール」台木樹が最も果皮色が良く、1粒重も重く、糖度が高く、酸含量も低かった（第49表）。2000年 9月の調査では1粒重で「グルーワール」台木のやや重いが果皮色、糖度酸含量などは浜崎系挿木樹との差がなく、常に良好であった（第50表）。

以上の結果から、ブドウ浜崎系「巨峰」ウイルス無毒の台木用品種には「グルーワール」が供試品種の中では最適と思われる。

<table>
<thead>
<tr>
<th>第47表 ウイルス無毒台木品種に緑枝接ぎしたウイルス無毒浜崎系「巨峰」の生育状況(1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>台木品種名</td>
</tr>
<tr>
<td>計</td>
</tr>
<tr>
<td>グローワール</td>
</tr>
<tr>
<td>S O 4</td>
</tr>
<tr>
<td>S B B</td>
</tr>
<tr>
<td>3 S O 9</td>
</tr>
<tr>
<td>1 2 O 2</td>
</tr>
<tr>
<td>浜崎共台</td>
</tr>
<tr>
<td>浜崎挿木苗</td>
</tr>
</tbody>
</table>

* 植原ブドウ園式わい化度によって表示

<table>
<thead>
<tr>
<th>第48表 ウイルス無毒台木品種に緑枝接ぎしたウイルス無毒浜崎系「巨峰」の1樹当たりの生育状況(2000, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>台木品種名</td>
</tr>
<tr>
<td>計</td>
</tr>
<tr>
<td>(木)</td>
</tr>
<tr>
<td>計</td>
</tr>
<tr>
<td>グローワール</td>
</tr>
<tr>
<td>S O 4</td>
</tr>
<tr>
<td>S B B</td>
</tr>
<tr>
<td>3 S O 9</td>
</tr>
<tr>
<td>1 2 O 2</td>
</tr>
<tr>
<td>浜崎共台</td>
</tr>
<tr>
<td>浜崎挿木苗</td>
</tr>
</tbody>
</table>

植原ブドウ園式わい化度によって表示

第49表 ウイルス無毒台木品種に緑枝接ぎした
ウイルス無毒浜崎系‘巨峰’の果粒形質（1999）

<table>
<thead>
<tr>
<th>台木品種名</th>
<th>異常化度（個）</th>
<th>1粒重</th>
<th>果梗径</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量 (g/100果汁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>グロワール</td>
<td>5</td>
<td>20.0</td>
<td>12.6</td>
<td>4.7</td>
<td>9.7</td>
<td>18.5</td>
</tr>
<tr>
<td>S O 4</td>
<td>4</td>
<td>22.9</td>
<td>11.1</td>
<td>4.6</td>
<td>7.8</td>
<td>18.3</td>
</tr>
<tr>
<td>5 B B</td>
<td>3</td>
<td>21.8</td>
<td>11.3</td>
<td>5.1</td>
<td>7.3</td>
<td>18.2</td>
</tr>
<tr>
<td>3 3 0 9</td>
<td>2</td>
<td>20.7</td>
<td>12.5</td>
<td>4.4</td>
<td>6.8</td>
<td>17.8</td>
</tr>
<tr>
<td>1 2 0 2</td>
<td>1</td>
<td>23.3</td>
<td>12.5</td>
<td>4.7</td>
<td>6.9</td>
<td>16.7</td>
</tr>
<tr>
<td>浜崎共台</td>
<td>21.8</td>
<td>10.8</td>
<td>4.7</td>
<td>8.8</td>
<td>18.5</td>
<td>0.400</td>
</tr>
<tr>
<td>浜崎播木苗</td>
<td>20.6</td>
<td>10.4</td>
<td>4.5</td>
<td>9.0</td>
<td>18.6</td>
<td>0.383</td>
</tr>
</tbody>
</table>

植原ブドウ園式わい化度によって表示

第50表 ウイルス無毒台木品種に緑枝接ぎした
ウイルス無毒浜崎系‘巨峰’の果粒形質（2000）

<table>
<thead>
<tr>
<th>台木品種名</th>
<th>異常化度（個）</th>
<th>1粒重</th>
<th>果梗径</th>
<th>果皮色</th>
<th>糖度</th>
<th>酸含量 (g/100果汁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>グロワール</td>
<td>5</td>
<td>22.4</td>
<td>12.2</td>
<td>4.6</td>
<td>9.3</td>
<td>18.7</td>
</tr>
<tr>
<td>S O 4</td>
<td>4</td>
<td>22.3</td>
<td>12.0</td>
<td>4.6</td>
<td>8.8</td>
<td>18.2</td>
</tr>
<tr>
<td>5 B B</td>
<td>3</td>
<td>21.8</td>
<td>11.9</td>
<td>4.9</td>
<td>8.3</td>
<td>18.0</td>
</tr>
<tr>
<td>3 3 0 9</td>
<td>2</td>
<td>20.7</td>
<td>12.0</td>
<td>5.1</td>
<td>7.8</td>
<td>17.6</td>
</tr>
<tr>
<td>1 2 0 2</td>
<td>1</td>
<td>23.3</td>
<td>11.9</td>
<td>5.1</td>
<td>6.9</td>
<td>16.3</td>
</tr>
<tr>
<td>浜崎共台</td>
<td>21.8</td>
<td>11.7</td>
<td>4.6</td>
<td>8.9</td>
<td>18.4</td>
<td>0.416</td>
</tr>
<tr>
<td>浜崎播木苗</td>
<td>21.3</td>
<td>11.5</td>
<td>4.5</td>
<td>9.1</td>
<td>18.6</td>
<td>0.396</td>
</tr>
</tbody>
</table>

総合考察

ブドウウイルス無毒樹は保糖樹に比べ、樹勢が旺盛で果粒大群が有する長さが著しいことが帯粒の果粒大小を阻害している。そこで、ブドウ浜崎系‘巨峰’ウイルス無毒樹の結果を安定して果粒大に及び形質向上のための果（花）房や新しお管理法の確立を図った。

まず、果（花）房管理による結果及び果粒品質の向上法について検討した。その結果、第2花房は第1花房に比べ、1粒重は軽い傾向にあるが、有核果粒数が高いくことから、花房は第2花房を利用すると生産が安定した。このことは、第1花房が早く開花し、遅くまで咲くが、第2花房は第1花房より開花が遅いと短期間で開花するために、着粒が優れているものと思われる。そこで、第2花房のみを整房し、第1花房を放任すると、全房を整房するより着粒率が高く、省力的であることが判った。第1花房を放任し、第2花房を整房すると着粒率が向上する理由については不明である。着粒機能については伊藤 11, Coombe 25, 26, 山村ら 27 はエチレンやオキシンなどの内生ホルモンも関与していると報告している。

今後、内生ホルモンの面から検討する必要がある。花期の利用段数は13～15段が最適で、段数が多く、大房になると有核果粒数が低く、果粒品質も劣る。花期の利用段数は果粒形質に影響がないが、段数が下位の花期が良いことが判かった。段数については、ブドウでは開花直前の段に整房または遮光によって花房中の小花数を制限すると着粒率が高まり、花房を防止できることは多くの報告 2, 5, 12 がある。また、‘巨峰’の果粒数について高
橋^{113} 三好ら^{130} は25〜30粒が最適と報告している。しかし、今回の供試品種である浜崎系「巨峰」ウイルス無毒樹は果皮色、糖度、1粒重などから20〜25粒が最適であった。

花房整理は果（花）房管理の中で最も労力を要する作業であるので、鉤を使用しない手作りによる労力的な方法を検討した。この手作り方法は鉤のかき抜きに比べ果粒形質、着粒程度がほとんどわからないので、所要時間は1〜6であることがから、手作り法と前述の第2花房利用を併用すると更に省力化できるものと思われる。

果樹の開花から開花・結果までの生長過程を見るとき、ナシやモモは新しようが発芽・伸長する前に前年枝に開花し、結実する。ブドウやカキは発芽した新しようが伸長しながら、または伸長が停止した後に開花して結実する。モモやナシのように開花時に新しようの伸長や新葉の展開が全くないか、ごくわずかであるような樹種では結実と果実の初期生長は樹体養分に影響される。しかし、ブドウのように開花時に既に新しようが伸長し、新葉が展開している樹種では新葉の同化作用能力、同化産物の転流と分配が結実と果実肥大を影響及ぼすことが推察され、そのような推論のもとで、結果果枝の各節部からの萌芽を促進させるためには薬剤処理を行い処理部にメリット青2倍液を塗布し、萌芽期にメリット青500倍液を散布して新しようを充実させ、7葉展葉期にフラスター液剤500倍を散布して枝伸長を止めると、有核果粒数が上がることが明らかにした。このことは萌芽が早いか有核果粒数が高くなるという柴^{139}の報告、開花前に枝伸長が止まるような結果枝は着粒率が高まるというTruett^{33}、Oinoue^{41}などの報告と一致した。開花初期での新しよう（結果枝）の長さは保木樹では40〜50cmが最適との報告^{133}, 7, 115, 119, 129, 130}が有、無毒樹では21〜50cmが最適であった。新しよう（結果枝）密度は「巨峰」ウイルス無毒樹では4〜5本/㎡が最適であり、保木樹の最適新しよう密度が4〜5本/㎡と云う結果と同じ結果^{129}であった。震^{141}はブドウの果粒肥大や着色には葉数が関係していると報告しているので、1花房当たりの葉数と果粒形質との関係を検討した結果、果粒形質の向上のためには1花房当たりの葉数は16枚程度が最適であった。デラウエアでは1花房当たり8枚が最適であるとの報告^{145}もあるが、「巨峰」の場合はより大粒であることが望まれるため、1花房当たり16枚は必要と思われる。長崎県の産地ではウイルス無毒樹は樹勢が強いことから新しようを多く残し、新しようの伸長を抑え、冬季させるに留めている圃が多いが、このことが国内を暗くして有核果粒数を低下させ、果粒肥大を阻害している原因と思われる。今回の試験で得られた、新しよう果実の場合の開花初期の新しよう（結果枝）長は20〜50cm、1花房当たりの果実数は16枚、新しよう密度は1㎡当たり4〜5本という結果は、浜崎系「巨峰」ウイルス無毒樹の好適樹相診断の目安の一つとして利用できる。

樹勢が旺盛なブドウ「巨峰」は枝葉での養分消費が多く、果実への養分分配が少なく、果粒の肥大が悪いと報告^{22}されており、ブドウや浜崎系「巨峰」ウイルス無毒樹でも同様なことが言われている。「巨峰」における枝葉での養分消費ながらに果実への養分分配は着粒後の摘果、摘袋、新しようや副新しよう管理、夏季せん定などの管理の影響を受けて、さらに翌年の樹木育成にも影響を及ぼすと考えられる。そこで、着粒後から収穫期までの適正枝条管理について検討した。その結果、新しよう誘引の程度は新しようを誘引するより、25cm以下の着枝果や無果（花）新しようを誘引せず、25cm以上の着枝果を誘引する方法が最良の樹相を示した。さらに、着粒後に新しようを摘むと、副新しようを2芽で摘むと果粒肥大が促進され、果皮色、糖度などが優れていたことから、果粒形質の向上のためにはウイルス保木樹ではある程度の葉数が必要であると云われているが、ウイルス無毒樹でも圃内への日照を考え、立体的に仕立てて葉数の多い樹体を作る必要があると思われる。樹勢安定と養分の消耗をなくすために、無駄な枝を除去したほうがよいと云う報告^{49}もあるが、6月に間引きせん定を連年行う樹体が胸、果粒形質が低下することから、ウイルス無毒樹の樹体管理は、萌芽期の芽かき主体で行い、早めに新しよう数を調整して圃内を明るくし、同化作用を活発化させることに努め、9月の間引きせん定を補完的
実施するのがよいことが明らかになった。
千秋に二次伸長した結果母枝は二次伸長しなかった結果母枝に比べ芽展時期が遅く、発育果が低く、また、発育果の低い結果母枝ほど翌年の芽展時期、着樹率、発育果率が低く、果皮色や糖度が劣ることが明らかとなった。このことは発育果の低い結果母枝は翌年の初期の樹体生育が劣ると報告し、されていることと一致する。その対策として、7月中旬に枝長が150cm以上の結果枝は12節より先端を下重させるが、12節と13節の間でせん断処理を行った結果、無処理に比べ、1粒重が高くなり、翌年度の着樹率、発育果率や発育果が長くなった。
なお、収穫15日後までのエルノー液剤200倍液散は結果枝の遅延を抑える散剤、樹 нашихの翌年の芽展時期、着樹率、発育果率や糖度が高く、果皮色は優れるという結果を得た。しかし、先端枝を下重させる方法は除草・防除などの作業時に邪魔になり、12節と13節の間で切除する方法は副紡や二次伸長しようを除去するのに大変労力必要ことを示し、エルノー液剤散剤が簡便であることが明らかとなった。今後は、収穫期の結果枝が12節程度の長さになるよう樹体調節を検討する必要がある。以上の結果から、収穫時の結果母枝初期枝の果実数が90％以上、枝長が13節程度の枝が最も実実し、翌年の芽展時期、着樹率を高めると言う結果を得たのは、枝系の巨峰ウイルス無毒樹の好適樹相の診断基準として利用できると思われる。

強勢な台木に接ぎ木した樹は果実が短くなる2）と言われている。長崎県の産地でもウイルス無毒樹の台木の果実品種に「五ＢＢ」を使用しているが、「五ＢＢ」の樹は樹勢が強いことから、有核果率が低く、着色も劣り、遲いと云われている。また、台木の先端枝はネアプラムタが発生し、生産性を著しく阻害し、激発すると枯れることから、適当台木の選抜が望まされている。そこで、枝系の巨峰ウイルス無毒樹に適する台木用品種の検討を行った。その結果、供試5品種のなかでは「グロワール」の樹が大きい性で、果皮色が優れ、1粒重も重く、酸含量は低く、糖度も高いことが判明した。しかし、今後生育が進み、成熟化した場合については不明で、今後も調査を継続する必要がある。また、摘果前では台木用品種の間には歪化化度と明瞭な生育の差が認められないが、摘果後は台木用品種の歪化化度にしたがって苗が生育する理由については不明である。そこで、摘果期、台木用品種の摘果樹と接木樹の果実の比較などに観察し、歪化化機構について解明する必要がある。

以上、ブドウ枝系の巨峰ウイルス無毒樹における高品質果実の安定生理技術の確立について述べてきたが、本試験は通正台木の選抜試験以外は摘果樹を供試した結果である。しかし、「グロワール」台木樹と摘果樹の樹体生育及び果実形質の差があまりないことが、この結果を参考にして、「グロワール」台木摘果樹の栽培に適用できるものと思われる。

摘 要
ブドウ枝系の巨峰ウイルス無毒樹の果実及び果実形質向上の方法として下記のことが判明した。
1. 第1花房は第1花房に比べ、1粒重は軽い傾向にあるが、有核果率が高いため、第1花房を利用してと生産が可能。
2. 第2花房のみを整房し、第1花房を放任すると、全房を整房することより着果率が高く、省力的である。
3. 花穂の利用段数は13～15段が最適である。段数が多く、大房になると有核果率が低く、果実形質が劣る。
4. 花穂の利用部位は果実形質には関係ないが、房結まりは下位の花穂が良い。
5. 1房の果実数は果皮色、糖度、1粒重などから判断して20～25粒が最適である。果皮の大きさの大きい果房は大粒になる。
6. スハンによる整房法は、従来の鉤かきに比べ処理の所要時間が1/6に短縮され省力的である。
7. ユィルス無毒樹の結果母枝の各節部からの摘果を促進させるには摘果処理とメリットク2倍液塗布処理の併用が最も効果が高く、摘果が無
処理の約2倍で、非葉単独処理がそれに次いで効果が高い。
8．冬季に発生する枯れ枝は徒長した枝やその二次伸長枝に発生するのではなく、そのすぐ下の下位枝に発生する。すなわち、上位枝が強大であると下位枝が不実不薬となり枯死部が発生する。
9．開花期から摘み期までの間に新芽の伸長が著しいと着粒率が低下する。開花初期に長さ21～50cmの新芽は、着果した果実の有核粒率が最も高い。
10．高品質果実生産のための1果房当たりの調査期の葉数は16枚程度が適当である。
11．7葉期の新芽に対するフラスター液剤区500倍散布区の着粒率は誘引や摘引と同等で、1粒率が重く、果皮色が劣っていることから省力的で、普遍性がある。
12．萌芽時期が早い枝ほど有核粒率が高く、新芽の密度は4～5本/㎡が1粒率が重く、果皮色や糖度も優れる。
13．6月に夏季せん定を連年行うと果実形質が低下することから、ウイルス無毒樹の樹体管理は芽かき主体で9月の夏季せん定を補完的に行うのがよい。
14．新芽誘引の程度は全新芽を誘引するより、25cm以下の着果枝や無果（花）房新芽のようなとは誘引せず、25cm以上の着果枝を誘引する方法が良好の樹相を示し、果皮色、1粒率、糖度が優れている。
15．展葉期から7～8枚葉期のメリット青液剤50倍液散布は新芽を早期に伸長させ、開花期以後には新芽の伸長が停止し、花芽化を低下させる。このことが有核粒率、果実形質を向上させる。
16．着粒後に新芽を摘み、副芽を2芽

引用文献
6) 広瀬 義隆. 1983. 基本技術編 生育過程と技術 芽かきと生育. 技18-22. 農業技術体系 果樹編
(2) ブドウ. 農文協. 東京
15) 大野俊雄. 1983. 基本技術編 生育過程と技術 適正着果. 技18-22. 農業技術体系 果樹編
(2) ブドウ. 農文協. 東京
18) 柴 寿・茂原 泉. 1982. ブドウ巨峰の施肥改善に関する研究. 1. 樹相診断法の確立－長野県における樹相診断法基準の設定. 園芸学会. 昭和57年度春季大会研究発表要旨：144-145.
Establishment of Technology for Stable Production of High Quality Grape from Berry in Virus-free Tree of Hamasaki-strain 'Kyoho'

Akira MORITA

Section of Deciduous Fruit Tree, Nagasaki Fruit Tree Experiment Station,
1370 Onibashi-cho, Omura, Nagasaki, 850-0021

Summary

In order to establish technology for stable production of high quality grape from virus-free tree of Hamasaki-strain 'Kyoho', the following was determined:

1. The use of the second flower cluster is more effective in stabilizing production as its rate of bearing grape with nucleus is higher, although its grape weight tends to be lighter than that of the first cluster.

2. If only the first cluster is pruned, the rate of bearing grape is higher and more labor is saved than if all cluster is pruned.

3. In terms of the number of row to be used, 13-15 is optimal. The more rows are used, and the bigger the flower cluster is, the rate of bearing grape with nucleus is lower and the character of grape is degraded.

4. Part of catkin to be used has nothing to do with grape character, but catkin in lower part grows into more compact cluster.

5. Judging from skin color, sugar content, and grape weight, 20-25 is optimal in the number of grape in one cluster. A cluster, which is bigger in diameter, grows into a bigger grape.

6. The method of manual cluster pruning is more labor-saving than pruning by scissors because the pruning time is saved by one sixth.

7. In order to stimulate budding from each node of fruit-bearing mother branch of virus-free tree, the combined use of treatment of damaged buds and spraying treatment with 2 times reduced Merit Blue is the most effective. Budding doubles as compared with non-treatment, and treatment of damaged buds only is the most effective second to the combined treatment.

8. Dead branches do not appear among branches with shoot appearing and ones with secondary shoot appearing, but among branches positioned under them. That is, if branches in higher positions become so strong, ones in lower positions do not grow sufficiently, some of them dying.

9. The grape bearing rate is lowered if current shoot grow remarkably between the flowering stage and the grape picking stage. For current shoot, which is 21-50 cm in the flowering stage, the percentage of grown cluster bearing grape with nucleus is the highest.

10. In order to grow high quality grape, nearly 16 per cluster is optimal in the number of leave in the full bloom stage.
11. In areas where Flaster solution and 500 times reduced solution are sprayed to current shoot in the 7-leaf stage, the grape bearing rate is the same as training and core pinching, and these treatments are labor-saving and popular as the weight of one grape is heavy and skin color is excellent.

12. The earlier the budding time is, the higher the rate of bearing grape with nucleus is. When the density of current shoot is 4-5 / ㎡, weight of one grape is heavy, skin color and sugar content is excellent, too.

13. If summer shear in June is conducted in consecutive years, grape character is degraded. Therefore, it is preferable that body management for virus-free tree focuses on bud pruning and is complemented with summer shearing September.

14. In training current shoot, it is better to train cluster bearing branch, which is bigger than 25 cm, without training ones below 25 cm and current shoot without bearing grape (flower), than to train all the current shoot. With the former training method, tree character shows the best performance while skin color, weight of one grape, and sugar content are excellent.

15. From the foliating stage to the 7-8 leaf stage, spray of Merit Blue and 500 times reduced solution will halt the growth of current shoot and lower shedding of flower. Through this treatment, the rate of bearing grape with nucleus and character of grape are improved.

16. If current shoot is pruned after grape has grown and if two pieces of lateral shoot is pruned thereafter, thickening of grape is prompted.

17. For grape-bearing branch the length of which is longer than 150 cm in the middle of July, by dropping some of branch nearer to the peak than the 12th node, or by shearing between 12th and 13th node, the weight of one grape is heavier, and the rate of bearing catkin in the next year, the rate of bearing grape with nucleus, and the filling rate are higher than non-treatment. Furthermore, for grape bearing mother branch with higher filling rate, the budding rate, the rate of bearing catkin and the rate of bearing grape with nucleus in the next year as well as sugar content are higher.

18. For grape bearing mother branch with secondary shoot appearing, budding is delayed, the rate of bearing grape with nucleus, weight of one grape is light, and skin color and sugar content are inferior, as compared to grape bearing mother branch with only the primary shoot appearing.

19. Spray of Elunor solution and 200 times reduced solution by 15 days after harvest controls secondary shoot of grape bearing branch, enriches branch, and improves the budding rate of sprayed tree in the next year, the rate of bearing grape with nucleus, sugar content, and skin color.

20. Clear relationship between the growing condition of nursery plant of stockshoot varietiy and the dwarffing rate was not determined. For the growth of nursery plant of rootstock varietiy, virus-free nursery plant grows more vigorously than the virus-keeping one.

21. For the growing condition of Hamaaki-strain ‘Kyoho’ grafted to rootstock variety, the growth is more vigorous as the dwarffing rate of rootstock variety is lower. For character of tree grafted to ‘Grover’ variety, skin color is the most excellent, weight of one grape is heavy, acid content is low, and sugar content is high.